

The equivalence points near $\mathrm{n}=32$ and $\mathrm{n}=97$ say that there are two ways of putting the same case. The difference between the lower and upper equivalence points relates to differing densities of symbols on objects; to the answer to the question: „of among \{n1 objects carrying symbol s1 and n2 objects carrying symbol s 2$\}$ how many are distinct?".

The through and peak points near $n=11$ and $n=66$ say that by using 11 groups of elements that are each sequenced within and among on one hand, while using the whole collection as a nonsequenced one on the other hand, one may achieve information compression witha ratio of around 1:3, estimated conservatively.

Please note that with $n>135$ the inexactitude of the matches exceeds the combinatorial contribution of 1 unit, therefore one may assume that the system leaks above a critical „size" and cannot grow endlessly in a fashion that is both commutative and sequenced.

