login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Length of longest chain of nonempty proper subsemigroups of the monoid of partial injective orientation-preserving functions of a chain with n elements.
1

%I #21 Feb 19 2019 04:06:53

%S 1,6,24,92,363,1483,6191,26077,109987,462900,1941613,8115138,33805905,

%T 140413073,581694265,2404314784,9917782935,40837958578,167889571658,

%U 689231516287,2825851058202,11572537702747,47342211484912,193485587828057,790066214186999,3223470297388819,13141840760544209,53540833421980514

%N Length of longest chain of nonempty proper subsemigroups of the monoid of partial injective orientation-preserving functions of a chain with n elements.

%H James Mitchell, <a href="/A242432/b242432.txt">Table of n, a(n) for n = 1..100</a>

%H P. J. Cameron, M. Gadouleau, J. D. Mitchell, Y. Peresse, <a href="http://arxiv.org/abs/1501.06394">Chains of subsemigroups</a>, arXiv preprint arXiv:1501.06394 [math.GR], 2015.

%t b[n_] := If[n < 1, 0, PrimeOmega[n]];

%t a[n_] := -2 - n + Sum[Binomial[n, i]*(b[i] + (Binomial[n, i] - 1)*i/2 + 2), {i, 0, n}];

%t Array[a, 28] (* _Jean-François Alcover_, Feb 19 2019, from PARI *)

%o (PARI) b(n)=if(n<1, 0, bigomega(n)) /* A001222 */

%o a(n)=-2-n+sum(i=0, n, binomial(n,i)*(b(i)+(binomial(n,i)-1)*i/2+2))

%Y Cf. A001222, A227914, A242428, A242429.

%K nonn

%O 1,2

%A _James Mitchell_, May 14 2014