login
A242098
Numbers n such that the residue of n modulo floor(sqrt(n)) is prime.
1
11, 14, 18, 19, 22, 23, 27, 28, 32, 33, 38, 39, 41, 44, 45, 47, 51, 52, 54, 58, 59, 61, 66, 67, 69, 71, 74, 75, 77, 79, 83, 84, 86, 88, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 123, 124, 126, 128, 134, 135, 137, 139, 146, 147, 149
OFFSET
1,1
COMMENTS
Also, i^2+p(1), i^2+p(2),..., i^2+p(k), i^2+i+p(1), i^2+i+p(2),..., i^2+i+p(k), for i>=3, where p(n) is the n-th prime and p(k) is the largest prime strictly less than i.
LINKS
EXAMPLE
floor(sqrt(28)) = 5. 28 modulo 5 = 3, which is prime, so 28 is in the sequence.
MATHEMATICA
Select[Range[200], PrimeQ[ Mod[#, Floor[Sqrt[#]]]]&] (* Harvey P. Dale, May 31 2019 *)
PROG
(Python)
from sympy import isprime
from math import sqrt, floor
from itertools import count
sequence = (_ for _ in count(1) if isprime(_ % floor(sqrt(_))))
print([next(sequence) for i in range(50)])
(PARI) for(n=1, 10^3, if(isprime(n%sqrtint(n)), print1(n", "))) \\ Jens Kruse Andersen, Aug 16 2014
CROSSREFS
Sequence in context: A084805 A159020 A015830 * A163672 A216580 A114948
KEYWORD
nonn,easy
AUTHOR
Mark E. Shoulson, Aug 14 2014
EXTENSIONS
Added alternative formulation in comment.
STATUS
approved