login
The numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).
3

%I #9 Aug 18 2014 16:58:11

%S 1,1,5,49,343,341,1374230,562991,117628797,5722552563,274111769750,

%T 767094923209,29727071936873882,860722536439030,65045120396044500,

%U 1850097086237495825037,16555136396811464938269,962684710425111932621,29167062964422333027973288250

%N The numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).

%o (Sage)

%o h = lambda x: zeta(2*x)*(4^x-2)

%o A242035 = lambda n: Integer((h((n+1)//2)*h(n//2)/h(n)).numerator())

%o [A242035(n) for n in range(19)]

%Y Cf. A246053 (denominator), A242050, A246051, A246052.

%K nonn,frac

%O 0,3

%A _Peter Luschny_, Aug 12 2014