The On-Line Encyclopedia of Integer Sequences

Neil J.A. Sloane
Visiting Scholar, Rutgers University
President, OEIS Foundation
II South Adelaide Avenue Highland Park, NJ

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

The On-Line Encyclopedia of Integer Sequences ${ }^{\circledR}$ (OEIS®)

Enter a sequence, word, or sequence number:

$$
1,2,3,6,11,23,47,106,235
$$

Search Hints Welcome Video
For more information about the Encyclopedia, see the Welcome page.

Content is available under The OEIS End-User License Agreement.
COMMENTS 9 is the multiplicative unit. A number n is a dismal prime if it is not a
dismal product (see A087062 for definition) $r^{* s}$ where neither r nor s is 9.
All dismal primes must contain a 9, so this is a subset of A011539.
Also, numbers n such that the dismal sum of the dismal prime divisors of n
is n . (From N. J. A. Sloane, Aug 23 2010)
LINKS David Applegate and N. J. A. Sloane, Table of $n, a(n)$ for $n=1 . .22095$ [all
primes with at most 6 digits]
D. Applegate, C program for dismal arithmetic and number theory
Index entries for sequences related to dismal arithmetic
EXAMPLE 8 is not prime since $8=8 * 8$. 9 is not prime since it is the multiplicative
unit. 10 is not prime since $10=10 * 8$. Thus 19 is the smallest prime.
CROSSREFS Cf. A087062, A087636, A087638, A087984.
Sequence in context: A047985 A061763 A088474 * A038364 A151360 A109276
Adjacent sequences: $\overline{\mathrm{A} 087094} \overline{\mathrm{~A} 087095} \overline{\mathrm{~A} 087096} * \overline{\mathrm{~A} 087098} \overline{\mathrm{~A} 087099} \overline{\mathrm{~A} 087100}$
KEYWORD nonn, easy, base
AUTHOR Marc LeBrun (mlb(AT)well.com), oct 202003

Outline of Talk

- About the OEIS
- Sequences from Geometry
- Sequences from Arithmetic
- "Music" andVideos
- The BANFF "Integer Sequences and KI2" Conference

OEIS.org

- Fun: $2,4,6,3,9, I 2,8, I 0,5, I 5, \ldots$?
- Addictive (better than video games)
- Accessible (free, friendly)
- Street creds (4000 citations)
- Interesting, educational
- Essential reference
- Low-hanging fruit
- Need editors

Facts about the OEIS

- Accurate information about 250000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, music!
- 200 new entries and updates every day
- 4000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Since 20IO, a moderatedWiki

Main Uses for OEIS

- To see if your sequence is new, to find references, formulas, programs
- Catalan or Collatz? (Very easy or very hard!)
- Many collaborations, very international
- Source of fascinating research problems
- Has led many people into mathematics
- Fun, Escape

Sequences from Geometry

- Slicing a pancake
- Kobon triangles
- Lines in plane
- Circles in plane
- Tiling a square with dominoes

Maximal number of pieces formed when slicing a pancake with n cuts

Kobon Triangles

Kobon Fujimura, circa 1983

A6066

Kobon Triangles

How many non-overlapping triangles can you draw with n lines?

1	2	3	4	5	6	7	8	9
0	0	1	2	5	7	11	15	21

A6066
a(10) is 25 or 26

Kobon triangles (cont.)

A6066

Johannes Bader: 17 lines, 85 triangle, maximum possible

$$
\begin{equation*}
\left.\left.\frac{a(1)=1}{a(2)=2}\right|_{(2.1) P_{2}} ^{L}+1.1\right) \tag{1.1}
\end{equation*}
$$

No. of ways to arrange n lines in the plane

$$
I, 2,4,9,47,79 I, 37830
$$

$$
a(3)=4
$$

$(3.1) P_{3}$
(3.2) $P_{2} L$

A24I600

$$
a(4)=9
$$

(4.1) P_{4} (4.2) $P_{3} L$
(4.3) P_{2}^{2}
(4.4) $P_{2} S_{2}(a)(4.5) P_{2} S_{2}(b)$

$$
\text { (4.6) } P_{2} S_{2}(c)
$$

$(4.7) S_{4} \quad(4.8) S_{3} L$
$(4.9) G_{4}$
$a(5)=47$. Summary:
$P_{5}: 1, P_{4} L: 1, P_{3} P_{2}: 1, P_{3} S_{2}: 4, P_{2}^{2} L: 6$,
$P_{2} G_{3}: 14, P_{2} S_{3}: 3, S_{5}: 1, S_{4} L: 1, S_{6}^{3}, 6 Q_{5} G$.
$S_{3}^{2}: 3, S_{3} S_{2}: 6, G_{5}: 6$
A24I600 (cont.)

(a)

(b)

(c)

(d)

$$
(5.8)-(5 \cdot 13)
$$

$$
P_{2}^{2} L:
$$

(b)

(d)
(e)

A90338

A subset: n lines in general position

I, I, I, I, 6, 43, 922, 38609
Wild and Reeves, 2004

5 lines in general position: 6 ways

$a(5)=6$

Tiling a Square with Dominoes

36 ways to tile a 4X4 square

$$
a(2)=36
$$

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000 , ..
(A4003)

$$
a(n)=\prod_{j=1}^{n} \prod_{k=1}^{n}\left(4 \cos ^{2} \frac{j \pi}{2 n+1}+4 \cos ^{2} \frac{k \pi}{2 n+1}\right)
$$

(Kastelyn, I96I)

Two days ago:

Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, Tianyuan Xu, Sandpiles and Dominos, 2015

1, 2, 36, 6728, 12988816, 258584046368, $53060477521960000 / 5, \ldots$... !
(A256043)

$\begin{aligned} & \text { \# grains } \\ & \boldsymbol{\square}=0 \\ & \square=1 \\ & \square=2 \\ & \square=3\end{aligned}$

Wigure 1: [dentity element for the sandpile group of the 400×400 sandpile grid graph.

$$
\begin{aligned}
& \text { Two Sequences That Agree For } \\
& \text { a Long Time } \\
& \left\lfloor\frac{2 n}{\log 2}\right\rfloor=\text { A078608 } \\
& \left\lceil\frac{2}{2^{1 / n}-1}\right\rceil \quad \begin{array}{l}
\text { Differs for first time at } \mathrm{n}= \\
77745|9| 5729368
\end{array} \\
& \text { (see AI29935) }
\end{aligned}
$$

Sequences from Arithmetic

- Lunar primes
- The EKG sequence
- Curling number conjecture
- Gijswijt's sequence

Lunar Arithmetic

David Applegate, Marc LeBrun and NJAS (J.I.S. 20II)

(For Martin Gardner)
Arithmetic on the moon!

- $\quad i+j=\operatorname{MAX}\{i, j\}$
- $\quad i \times j=\operatorname{MIN}\{i, j\}$

19
$\times 24$
No carries!

Thm.: Lunar arithmetic is commutative, associative, distributive

Lunar squares

$0,1,2,3,4,5,6,7,8,9$, 100, 111, 112, 113, 114, 115, 116, 117, 118, 119, 200, ...
(A870 I 9)

Lunar primes?

What is a prime?

Ans. Only factorization is $p=1 \times p$

But what is "I"?

Ans. The multiplicative identity:

$$
\begin{gathered}
\text { "l" } \times \mathrm{n}=\mathrm{n} \text { for all } \mathrm{n} \\
\text { But } \mid \times 3=1 \text {, so " } \mathrm{l} " \neq \mathrm{l} \\
\text { So "l" }=9 \text {, since } 9 \times \mathrm{n}=\mathrm{n} \text { for all } \mathrm{n} .
\end{gathered}
$$

If $u \times v=9$ then $u=v=9$, so 9 is the only unit.

So p is prime if its only factorization is $p=9 \times p$

Lunar primes (cont.)

p is prime if only factorization is $p=9 \times p$

$$
\begin{aligned}
& \text { 7? No, } 7=7 \times 7 \\
& \text { 13? No, } 13 \times 4
\end{aligned}
$$

So must have 9 as a digit.

9? No, 9 is the unit
Lunar primes:
(A87097)
19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 209, ...

$$
(119=19 \times 19 \text { is not a prime })
$$

There are infinitely many primes 109 is prime!

Proof:

Similarly, 10... 009 is prime!

The EKG Sequence

Jonathan Ayres, 200 I

EKG Sequence (A644I3)

$$
\begin{aligned}
& I, 2,4,6,3,9,|2,8,|0,5,| 5, \ldots \\
& a(I)=I, a(2)=2, \\
& a(n)=\min k \text { such that }
\end{aligned}
$$

- GCD $\{\mathrm{a}(\mathrm{n}-\mathrm{I}), \mathrm{k}\}>\mathrm{I}$
- k not already in sequence
- Jonathan Ayres, 2001
- Analyzed by Lagarias, Rains, NJAS, Exper. Math., 2002
- Gordon Hamilton, Videos related to this sequence:

Theorems:

EKG Sequence

- The sequence is a permutation of the natural numbers
- $c_{1} n \leq a(n) \leq c_{2} n$

Conjectures

- $a(n) \sim n\left(1+\frac{1}{3 \log n}\right)$
for the main terms
- $\quad \cdots, 2 p, p, 3 p, \cdots($ primes $p>2)$
(Proved by Hofman \& Pilipczuk, 2008)

EKG Sequence LEMMA I IF ∞ MANY MULTIPLES OF PRIME P APPEAR, THEN ALL MULTIPLES DO.
Pf. kp not in sequence

$$
\begin{aligned}
& \exists n_{0} \text { sit. } n \geqslant n_{0} \Rightarrow a(n)>k p \\
& \therefore a(n)=i p \quad \therefore a(n+1)=k p, *
\end{aligned}
$$

LEMMA 2 IF ALL MULTIPLES OF p APPEAR THEN ALL NUMBERS DO.
Pa. K not in sequence

$$
a(n)=k i p \quad a(n+1)=k \quad \geqslant
$$

THEOREM $\{a(x)\}$ IS PERM, OF $\{1,2-3\}$
Pf. IF ∞ MANY DIFF PRIMES,

$$
\therefore \infty \text { MANY } 2 p^{\prime} \text { ', USE } L_{1}, L 2 \text {. }
$$

IF FINITELY MANY DIFFI PRIMES, ONE APPEARS DD OFTEN, USE LI,LZ. QED

The Curling Number Conjecture

The Curling Number Conjecture

Definition
of
Curling
Number

CURLING NUMBER CONJECTURE

- start with any finite string
- APPEND CURLING NUMBER

REPEAT

- THEN MUST REACH A I !?
E.G.

START: $222322>$
THEN $\left.\begin{array}{lllllllll}2 & 3 & 2 & 2 & 2 & 3 & 3 & 2 & 1\end{array}\right]$ Boo!

Gijswijt's Sequence

Dion Gijswijt, 2004

A90822

Gijswijt's Sequence

Fokko v. d. Bult, Dion Gijswijt, John Linderman, N. J.A. Sloane, Allan Wilks (J. Integer Seqs., 2007)

Start with I, always append curling number

$$
\begin{aligned}
& 11 \underline{2} \\
& 1 \left\lvert\, \begin{array}{llll}
1 & \underline{2} & \underline{3}
\end{array}\right. \\
& \text { | } 12 \\
& \text { 1 1 } 22232 \\
& 112 \\
& \begin{array}{llllll}
1 & 1 & 2 & 2 & 2 & 3
\end{array} \\
& 112 \\
& \begin{array}{llllllllllllllll}
1 & 1 & 2 & 2 & 2 & 3 & 2 & \underline{2} & \underline{2} & \underline{3} & \underline{2} & \underline{2} & \underline{2} & \underline{3} & \underline{3} & \underline{2}
\end{array} \\
& 112 \\
& a(220)=4
\end{aligned}
$$

Gijswijt, continued

Gijswijt, continued

Is there a 5 ?

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5

Gijswijt, continued

Is there a 5 ?
300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5
NJAS, FvdB: first 5 at about term $10^{10^{23}}$

Gijswijt, continued

First n appears at about term

(F.v.d. Bult et al., J. Integer Sequences, 2007)
(A90822)

Gijswijt, continued

Proofs could be simplified if Curling Number Conjecture were true

How far can you get with an initial string of n 2's and 3's
 (before a I appears)?

THE UNIQUE RECORD STARTS:
LENGTH 8: 23222323 $\rightarrow 66$
LENGTH 22:

$$
\begin{aligned}
& 232232232322232322323 \\
& \rightarrow 142
\end{aligned}
$$

LENGH $48 \rightarrow 179$

LENGTH $77 \rightarrow 250$
JOINT WORK WITH
$\frac{\text { BEN CHAFFIN }}{\text { (INTEL) }}$

LET $\mu(n)=$ MAX LENGTH
ATTAINED STARTING WITH n 2's \& 3's.
IF S ACHENES $\mu(n) \geq \mu(n-1)+1$
THEN S DOES NOT
CONTAIN $W^{4}, W \neq \phi$.
(SO MOT 2222)
Searched $\mathrm{n}<=53$
Conjecture
-• S ALSO DOES
NOT CONTAIN 33. Searched $\mathrm{n}<=80$

Curling Number Conjecture, continued

"Music" and Videos

Reminder: New keywords "hear" and "look"

Pascal's triangle
 A7318

Hofstadter Q sequence A5I85

$$
\mathrm{a}(1)=\mathrm{a}(2)=1 ; \mathrm{a}(\mathrm{n})=\mathrm{a}(\mathrm{n}-\mathrm{a}(\mathrm{n}-1))+\mathrm{a}(\mathrm{n}-\mathrm{a}(\mathrm{n}-2)) \text { for } \mathrm{n}>2 .
$$

$\mathrm{wt}(\mathrm{n})$ and $4^{\wedge} \mathrm{wt}(\mathrm{n})$ together

(AI20 and AI02376, Taiko drum and xylophone)

Martin Paech's arrangement of A242353

Recaman's sequence A5I32

(Midi "instrument" FX-7)

Samuel Vriezen, Toccata III (200I)

Faure, Prelude, Op. I03, \#3

(in G Minor)

Videos about sequences

Charles McKeague, Fibonacci numbers
Dale Gerdemann, Fibonacci tree
Christobal Vila, Nature by numbers
Robert Walker, Golden Rhythmicon
Gordon Hamilton, Wrecker ball sequence (Recaman's sequence)

There are nearly 200 videos, movies, animations in the OEIS - we need more!

The BANFF Integer Sequences K-I2 Conference

Conference organized by Gordon Hamilton and me
Feb. 27 - March I, 2015

Feb. 27-Mar. 12015
Banff International Research Station

32-Page Report

Integer Sequences K-12

Detailed Report on Individual Sequences For Each Grade

54 Pages

Selected Integer Sequences

Henri Picciotto
www.MathEducationPage.org
henri@MathEducationPage.org

\qquad
McNuggets Numbers: A214777 .. 3
Polyomino Perimeter: $\underline{\text { A027709 ..p. } 6}$
Staircases (trapezoidal numbers): $\underline{\text { A069283 ..p. } 9}$
Figurate Numbers: $\underline{\text { A000217 }} \underline{\text { A005891, A000537, etc. ..p. } 10}$

The OEIS

The On-Line Encyclopedia of Integer Sequences

https://oeis.org

Supported by The OEIS Foundation Inc: oeisf.org
A 501(c)(3) public charity - please donate!

