login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241415 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is not a part and the number of numbers having multiplicity > 1 is a part. 6

%I #4 Apr 29 2014 00:07:02

%S 0,0,1,1,1,1,2,2,3,4,7,9,16,18,31,37,56,66,92,110,153,174,231,275,357,

%T 423,542,642,825,990,1228,1483,1869,2221,2757,3325,4055,4853,5926,

%U 7033,8519,10128,12110,14353,17142,20168,23938,28215,33243,39019,45968

%N Number of partitions p of n such that the number of numbers having multiplicity 1 in p is not a part and the number of numbers having multiplicity > 1 is a part.

%F a(n) + A241415(n) + A241416(n) = A239737(n) for n >= 0.

%e a(6) counts these 2 partitions: 2211, 111111.

%t z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]

%t Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *)

%t Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)

%t Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)

%t Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)

%Y Cf. A241413, A241414, A241416, A241417, A239737, A000041.

%K nonn,easy

%O 0,7

%A _Clark Kimberling_, Apr 23 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 22:00 EST 2023. Contains 367420 sequences. (Running on oeis4.)