The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241388 Number of partitions p of n such that the number of distinct parts is not a part and max(p) - min(p) is a part. 5

%I

%S 0,0,0,0,0,0,0,0,0,1,1,1,5,2,7,10,15,14,30,28,49,56,81,89,135,148,212,

%T 246,327,377,506,578,759,883,1119,1314,1651,1918,2388,2789,3429,4012,

%U 4880,5688,6883,8029,9618,11213,13388,15550,18464,21431,25316,29343

%N Number of partitions p of n such that the number of distinct parts is not a part and max(p) - min(p) is a part.

%F a(n) + A241387(n) + A241389(n) = A241391(n) for n >= 0.

%e a(9) counts this one partition: 63.

%t z = 40; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := d[p] = Length[DeleteDuplicates[p]];

%t Table[Count[f[n], p_ /; MemberQ[p, d[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241387 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, d[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241388 *)

%t Table[Count[f[n], p_ /; MemberQ[p, d[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241389 *)

%t Table[Count[f[n], p_ /; ! MemberQ[p, d[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241390 *)

%t Table[Count[f[n], p_ /; MemberQ[p, d[p]] || MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241391 *)

%Y Cf. A241387, A241389, A241390, A241391.

%K nonn,easy

%O 0,13

%A _Clark Kimberling_, Apr 21 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 00:01 EDT 2020. Contains 338010 sequences. (Running on oeis4.)