Expected Lifetimes and Inradii

Steven Finch

February 23, 2005
In earlier essays [1, 2], we examined 1-dimensional Brownian motion starting at 0; here, we generalize. A d-dimensional stochastic process $\left\{W_{t}: t \geq 0\right\}$ is a Brownian motion with arbitrary starting point W_{0} if the component processes

$$
W_{t, 1}-W_{0,1}, W_{t, 2}-W_{0,2}, \ldots, W_{t, d}-W_{0, d}
$$

are independent 1-dimensional Brownian motions starting at 0 and, further, are independent of $W_{0,1}, W_{0,2}, \ldots, W_{0, d}$.

It is remarkable that d-dimensional Brownian motion can be used to represent the solution of the heat PDE [3, 4]:

$$
\begin{cases}\frac{\partial u}{\partial t}=\frac{1}{2} \triangle u, & t \geq 0, \xi \in \mathbb{R}^{d} \\ u(0, \xi)=f(\xi), & f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { piecewise continuous }\end{cases}
$$

in the following sense:

$$
\begin{aligned}
u(t, \xi) & =\mathrm{E}\left(f\left(W_{t}\right) \mid W_{0}=\xi\right) \\
& =\frac{1}{(2 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} f(\omega) \exp \left(-\frac{|\xi-\omega|^{2}}{2 t}\right) d \omega .
\end{aligned}
$$

As a corollary, if f is the Dirac impulse at 0 , then u simplifies to

$$
u(t, \xi)=\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{|\xi|^{2}}{2 t}\right)
$$

that is, the heat kernel coincides with the Brownian transition density starting at 0 .
Also, let D denote an open, simply connected domain in \mathbb{R}^{d} with piecewise smooth, closed, orientable boundary C. The solution of the Laplace PDE (Dirichlet boundary value problem):

$$
\begin{cases}\triangle v=0, & \xi \in D, \\ v(\xi)=g(\xi), & \xi \in C, g: C \rightarrow \mathbb{R} \text { piecewise continuous }\end{cases}
$$

[^0]can be written as
$$
v(\xi)=\mathrm{E}\left(g\left(W_{\tau}\right) \mid W_{0}=\xi\right)
$$
where τ is the lifetime or first exit time of Brownian motion in D :
$$
\tau=\inf \left\{t>0: W_{t} \notin D\right\}
$$

Consequently, if $C=C_{0} \cup C_{1}, C_{0} \cap C_{1}=\emptyset$ and $g(\xi)=k$ for $\xi \in C_{k}$, then $v(\xi)$ is the probability that a Brownian particle which starts at $\xi \in D$ stops at some point $\eta \in C_{1}$.

These two examples are special cases of a more general principle that solutions of any parabolic or elliptic PDE can be represented as expectations of certain stochastic functionals. (A hyperbolic PDE such as the wave equation $\partial^{2} u / d t^{2}=(1 / 2) \triangle u$ apparently cannot be solved in this manner.)

So far we have seen how probability is a servant of analysis. An example of how analysis serves probability is that the expected lifetime $v(\xi)=\mathrm{E}\left(\tau \mid W_{0}=\xi\right)$ satisfies the Poisson PDE

$$
\begin{cases}\triangle v=-2, & \xi \in D \\ v(\xi)=0, & \xi \in C\end{cases}
$$

For instance, if D is the ball of radius r in \mathbb{R}^{d} centered at 0 , then $v_{D}(\xi)=\left(r^{2}-|\xi|^{2}\right) / d$. In the remainder of this essay, let $d=2$. If T is the equilateral triangular region in \mathbb{R}^{2} with vertices $(0,2 a / 3),(\pm a / \sqrt{3},-a / 3)$, then

$$
v_{T}(x, y)=\frac{1}{2 a}\left(y-\sqrt{3} x-\frac{2}{3} a\right)\left(y+\sqrt{3} x-\frac{2}{3} a\right)\left(y+\frac{1}{3} a\right) .
$$

If S is the square region in \mathbb{R}^{2} with vertices $(\pm b, \pm b)$, then [5]

$$
v_{S}(x, y)=\frac{32 b^{2}}{\pi^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}\left[1-\operatorname{sech}\left(\frac{(2 k+1) \pi}{2}\right) \cosh \left(\frac{(2 k+1) \pi y}{2 b}\right)\right] \cos \left(\frac{(2 k+1) \pi x}{2 b}\right)
$$

The lifetime functions $v_{D}(x, y), v_{T}(x, y)$ and $v_{S}(x, y)$ are each maximized when $x=$ $y=0$. Define, for $b=1 / 2$,

$$
\gamma=v_{S}(0,0)=\frac{8}{\pi^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}\left[1-\operatorname{sech}\left(\frac{(2 k+1) \pi}{2}\right)\right]=0.1473427065 \ldots
$$

This constant will be useful in the following; we wonder whether it has a closed-form expression.

When $r=1 / \sqrt{\pi}, a=\sqrt[4]{3}$ and $b=1 / 2$, each of D, T and S have area 1 and

$$
v_{D}(0,0)=\frac{1}{2 \pi}=0.159 \ldots>v_{S}(0,0)=\gamma=0.147 \ldots>v_{T}(0,0)=\frac{2 \sqrt{3}}{27}=0.128 \ldots
$$

In fact, among all planar regions of fixed area, the disk possesses the longest lifetime [6]. No such region with shortest lifetime exists, for consider the $c \times(1 / c)$ finite strip as $c \rightarrow \infty$.

When $r=1, a=3$ and $b=1$, each of D, T and S have inradius 1 (meaning the radius of the largest inscribed disk is unity) and

$$
v_{D}(0,0)=\frac{1}{2}=0.5<v_{S}(0,0)=4 \gamma=0.589 \ldots<v_{T}(0,0)=\frac{2}{3}=0.666 \ldots
$$

Clearly, among all planar regions of fixed inradius, the disk possesses the shortest lifetime. By way of contrast with the preceding, finding such a region with longest lifetime is an unsolved problem. Let

$$
K=\sup _{D} \sup _{(x, y) \in D} \mathrm{E}\left(\tau \mid W_{0}=(x, y)\right),
$$

where the outer supremum is over all simply connected domains D in \mathbb{R}^{2} of unit inradius; thus $K \geq 2 / 3$. The $2 \times \infty$ infinite strip improves this inequality to $K \geq 1$ and is the best such convex domain [7, 8]. Bañuelos \& Carroll [9, 10] demonstrated that $1.584<K<3.228$; they speculated that the associated nonconvex domain D is extremal for certain other optimization problems as well.
0.1. Fundamental Drum Frequency. The bass tone of a kettledrum, whose head shape is a simply connected domain D in \mathbb{R}^{2}, is the square root of the smallest eigenvalue λ of $[11,12]$

$$
\begin{cases}\triangle u=-\lambda u, & \xi \in D \\ u(\xi)=0, & \xi \in C\end{cases}
$$

For instance, if D is the disk of radius r centered at $(0,0)$, then the first eigenfunction/eigenvalue pair is

$$
u_{D}(x, y)=J_{0}\left(\frac{j_{0} \sqrt{x^{2}+y^{2}}}{r}\right), \quad \lambda_{D}=\left(\frac{j_{0}}{r}\right)^{2}
$$

where $J_{0}(z)$ is the zeroth Bessel function of the first kind and $j_{0}=2.4048255576 \ldots$ is its smallest positive zero. If T is the equilateral triangular region of height a centered at $(0, a / 6)$, then $[13,14]$

$$
\begin{aligned}
& u_{T}(x, y)=\sin \left(\frac{\pi}{a}\left(y-\sqrt{3} x-\frac{2}{3} a\right)\right)+\sin \left(\frac{\pi}{a}\left(y+\sqrt{3} x-\frac{2}{3} a\right)\right)-\sin \left(\frac{2 \pi}{a}\left(y+\frac{1}{3} a\right)\right), \\
& \lambda_{T}=\frac{4 \pi^{2}}{a^{2}}
\end{aligned}
$$

If S is the square region of side $2 b$ centered at $(0,0)$, then

$$
u_{S}(x, y)=\cos \left(\frac{\pi x}{2 b}\right) \cos \left(\frac{\pi y}{2 b}\right), \quad \lambda_{S}=\frac{\pi^{2}}{2 b^{2}}
$$

When D, T and S each have area 1,

$$
\lambda_{D}=\pi j_{0}^{2}=18.168 \ldots<\lambda_{S}=2 \pi^{2}=19.739 \ldots<\lambda_{T}=\frac{4 \pi^{2}}{\sqrt{3}}=22.792 \ldots
$$

The Faber-Krahn inequality states that, among all planar regions of fixed area, the disk possesses the lowest bass tone. No such region with highest bass tone exists, for consider the $c \times(1 / c)$ finite strip as $c \rightarrow \infty$.

When D, T and S each have inradius 1,

$$
\lambda_{D}=j_{0}^{2}=5.783 \ldots>\lambda_{S}=\frac{\pi^{2}}{2}=4.934 \ldots>\lambda_{T}=\frac{4 \pi^{2}}{9}=4.386 \ldots
$$

Clearly, among all planar regions of fixed inradius, the disk possesses the highest bass tone. Finding such a region with lowest bass tone is an unsolved problem. Let

$$
\Lambda=\inf _{D} \lambda_{D}
$$

where the infimum is over all simply connected domains D in \mathbb{R}^{2} of unit inradius; thus $\Lambda \leq 4 \pi^{2} / 9$. The $2 \times \infty$ infinite strip improves this inequality to $\Lambda \leq \pi^{2} / 4=$ $2.467 \ldots$ and is the best such convex domain [15, 16, 17]. In the other direction, Makai [18, 19, 20, 21, 22] proved that $\Lambda \geq 1 / 4$. The best bounds currently known [9] are $0.6197<\Lambda<2.1292$ and the associated nonconvex domain D is conjectured to be the same as before.

What does this have to do with Brownian motion? We give just one (of several) formulas [10, 23]:

$$
\Lambda_{D}=2 \sup \left\{c \geq 0: \sup _{(x, y) \in D} \mathrm{E}\left(e^{c \tau} \mid W_{0}=(x, y)\right)<\infty\right\}
$$

for bounded, simply connected D. In words, the fact that $\lambda_{D} \geq \Lambda / \rho^{2}>0$ for D of inradius ρ means that if a drum produces an arbitrarily low bass tone, then it must contain an arbitrarily large circular subdrum.
0.2. Torsional Rigidity. Let us return to the expected lifetime function $v(x, y)$ and evaluate not its maximum value in the domain D, but rather twice its average value

$$
\mu=\frac{2}{\operatorname{area}(D)} \int_{D} \mathrm{E}\left(\tau \mid W_{0}=(x, y)\right) d x d y
$$

For instance, if D is the disk of radius r centered at $(0,0)$, then $\mu_{D}=r^{2} / 2$. If T is the equilateral triangular region of height a centered at $(0, a / 6)$, then $\mu_{T}=a^{2} / 15$. If S is the square region of side $2 b$ centered at $(0,0)$, then [5]

$$
\begin{aligned}
\mu_{S} & =\frac{4 b^{2}}{3}\left[1-\frac{192}{\pi^{5}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{5}} \tanh \left(\frac{(2 k+1) \pi}{2}\right)\right] \\
& =\frac{1}{4} b^{2}(2.2492322392 \ldots)=b^{2}(0.5623080598 \ldots)=4 b^{2}(0.1405770149 \ldots)
\end{aligned}
$$

Again, we wonder about the possibility of closed-form evaluation.
When $r=1 / \sqrt{\pi}, a=\sqrt[4]{3}$ and $b=1 / 2$,

$$
\mu_{D}=\frac{1}{2 \pi}=0.159 \ldots>\mu_{S}=0.140 \ldots>\mu_{T}=\frac{\sqrt{3}}{15}=0.115 \ldots
$$

This can be expressed in the language of elasticity theory. Pólya [24, 25, 26, 27] proved Saint Venant's conjecture that, among all cylindrical beams of prescribed cross-sectional area, the circular beam has the highest torsional rigidity. No such beam with lowest torsional rigidity exists, for consider the $c \times(1 / c)$ rectangle as $c \rightarrow \infty$.

When $r=1, a=3$ and $b=1$,

$$
\mu_{D}=\frac{1}{2}=0.5<\mu_{S}=0.562 \ldots<\mu_{T}=\frac{3}{5}=0.6
$$

Among all cylindrical beams of prescribed cross-sectional inradius, the circular beam has the lowest normalized torsional rigidity (normalized by area, as defined earlier). Finding such a beam with highest normalized torsional rigidity is an unsolved problem. Let

$$
M=\sup _{D} \mu_{D}
$$

where the supremum is over all simply connected domains D in \mathbb{R}^{2} of unit inradius; thus $M \geq 3 / 5$. The $2 \times c$ rectangle improves this inequality, as $c \rightarrow \infty$, to $M \geq 4 / 3$ and is the best such convex domain [28]. For nonconvex domains, we have the upper bound 6.456 [9], but little else is known about this problem.
0.3. Conformal Mapping. If E is an open, simply connected region in \mathbb{C}, define $\rho(E)$ to be the inradius of E. The univalent Bloch-Landau constant Θ is given by [29]

$$
\Theta=\inf _{f} \rho(f(D))
$$

where the infimum is over all one-to-one analytic functions f defined on the open unit disk D satisfying $f(0)=1, f^{\prime}(0)=1$. Let g denote the conformal mapping of
D onto the infinite strip $-\pi / 4<\operatorname{Im}(z)<\pi / 4$:

$$
g(z)=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right)=\sum_{k=0}^{\infty} \frac{z^{2 k+1}}{2 k+1},
$$

hence $\Theta \geq \pi / 4$. Szegö [30,31] further proved that, if $f(D)$ is convex, then $\rho(f(D)) \leq$ $\rho(g(D))$. For the nonconvex scenario, the best bounds currently known [9, 32, 33] are $0.57088<\Theta<0.65642$ and the associated nonconvex region $f(D)$ is conjectured to be the same as the nonconvex domain for the constants K and Λ.
0.4. Addendum. The constant γ indeed has a closed-form expression [34, 35]:

$$
\gamma=4 \frac{{ }_{4} F_{3}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2} ; \frac{5}{4}, \frac{5}{4}, 1 ; 1\right)}{B\left(\frac{1}{4}, \frac{1}{2}\right)^{2}}=0.1473427065 \ldots=\frac{1}{2}(0.2946854131 \ldots)
$$

where ${ }_{p} F_{q}$ is the generalized hypergeometric function [36] and B is the Euler beta function $(B(x, y)=I(1, x, y)$ in [37]). An interesting double series representation:

$$
\gamma=\frac{32}{\pi^{4}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{m+n}}{(2 m-1)(2 n-1)\left[(2 m-1)^{2}+(2 n-1)^{2}\right]}
$$

follows from a formula in [38] which, in turn, was corrected in [39]. See also [40].
Both λ and μ can be defined via the calculus of variations [26]. It is more customary to take area $(D) \mu$ as torsional rigidity and this is equal to [41, 42]

$$
\frac{1}{12}-\frac{16}{\pi^{5}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{5}} \operatorname{coth}\left(\frac{(2 k+1) \pi}{2}\right)=0.0260896517 \ldots
$$

for an isosceles right triangle with sides $1,1, \sqrt{2}$ and [43, 44]

$$
\begin{aligned}
& 9\left[\frac{17 \sqrt{3}}{192}-\frac{1}{\pi^{5}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{5}}\left\{2 \tanh \left(\frac{(2 k+1) \pi \sqrt{3}}{2}\right)-9 \tanh \left(\frac{(2 k+1) \pi}{2 \sqrt{3}}\right)+\right.\right. \\
& \left.\left.(-1)^{k} 9 \sqrt{3} \operatorname{sech}\left(\frac{(2 k+1) \pi}{2 \sqrt{3}}\right)+27 \sqrt{3} \sin \left(\frac{(2 k+1) \pi}{3}\right)\right\}\right] \\
= & 0.0044516625 \ldots=\frac{9}{16}(0.0079140667 \ldots)
\end{aligned}
$$

for a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with sides $1 / 2, \sqrt{3} / 2$ and 1 . The corresponding value for a regular hexagon of unit side has attracted considerable attention [45, 46, 47, 48] see history in [42] - a complicated formula in [49] gives ≈ 1.035459, as reported in [50], and verifies an unpublished calculation in [51].

References

[1] S. R. Finch, Ornstein-Uhlenbeck process, unpublished note (2004).
[2] S. R. Finch, Variants of Brownian motion, unpublished note (2004).
[3] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, 1984, pp. 36-39, 219-270; MR0750829 (87a:60054).
[4] R. Durrett, Stochastic Calculus: A Practical Introduction, CRC Press, 1996, pp. 125-166; MR1398879 (97k:60148).
[5] S. Timoshenko and J. N. Goodier, Theory of Elasticity, $3^{\text {rd }}$ ed, McGraw-Hill, 1970, pp. 297-301, 309-315; MR0045547 (13,599i).
[6] R. Bañuelos, Queen Dido's property for eigenvalues and Brownian motion, unpublished lecture (2001).
[7] L. E. Payne, Bounds for the maximum stress in the Saint Venant torsion problem, Indian J. Mech. Math., special issue (1968/69), part I, 51-59; MR0351225 (50 \#3714).
[8] R. P. Sperb, Maximum Principles and their Applications, Academic Press, 1981, pp. 85-89; MR0615561 (84a:35033).
[9] R. Bañuelos and T. Carroll, Brownian motion and the fundamental frequency of a drum, Duke Math. J. 75 (1994) 575-602; addendum 82 (1996) 227; MR1291697 (96m:31003) and MR1387227 (97f:31004).
[10] T. Carroll, Old and new on the bass note, the torsion function and the hyperbolic metric, Irish Math. Soc. Bull. 47 (2001) 41-65; MR1880191 (2002k:58072).
[11] S. R. Finch, Sobolev isoperimetric constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 219-225.
[12] S. R. Finch, Bessel function zeroes, unpublished note (2003).
[13] M. A. Pinsky, The eigenvalues of an equilateral triangle, SIAM J. Math. Anal. 11 (1980) 819-827; 16 (1985) 848-851; MR0586910 (82d:35077) and MR0793926 (86k:35115).
[14] L. M. Cureton and J. R. Kuttler, Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection, J. Sound Vibration 220 (1999) 83-98; MR1672258 (99j:35025).
[15] J. Hersch, Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys. 11 (1960) 387-413; MR0125319 (23 \#A2622).
[16] R. Bañuelos, R. Latala and P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc. 129 (2001) 2997-3008; MR1840105 (2002c:60125).
[17] P. J. Méndez-Hernández, Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius, Duke Math. J. 113 (2002) 93-131; MR1905393 (2003b:31005).
[18] E. Makai, A lower estimation of the principal frequencies of simply connected membranes, Acta Math. Acad. Sci. Hungar. 16 (1965) 319-323; MR0185263 (32 \#2732).
[19] W. K. Hayman, Some bounds for principal frequency, Applicable Anal. 7 (1977/78) 247-254; MR0492339 (58 \#11468).
[20] R. Osserman, A note on Hayman's theorem on the bass note of a drum, Comment. Math. Helv. 52 (1977) 545-555; MR0459099 (56 \#17297).
[21] M. E. Taylor, Estimate on the fundamental frequency of a drum, Duke Math. J. 46 (1979) 447-453; MR0534061 (81g:35097).
[22] C. B. Croke, The first eigenvalue of the Laplacian for plane domains, Proc. Amer. Math. Soc. 81 (1981) 304-305; MR0593476 (82e:35061).
[23] S. E. Graversen and M. Rao, Brownian motion and eigenvalues for the Dirichlet Laplacian, Math. Z. 203 (1990) 699-708; MR1044073 (91f:35197).
[24] G. Pólya, Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math. 6 (1948) 267-277; MR0026817 (10,206b).
[25] G. Pólya and A. Weinstein, On the torsional rigidity of multiply connected crosssections, Annals of Math. 52 (1950) 154-163; MR0040159 (12,652e).
[26] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951, pp. 87-100, 121, 251-261; MR0043486 (13,270d).
[27] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, 1980, pp. 63-67, 158-159; MR0572958 (81e:35095).
[28] E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Pólya, ed. G. Szegö, C. Loewner, S. Bergman, M. M. Schiffer, J. Neyman, D. Gilbarg, and H. Solomon, Stanford Univ. Press, 1962, pp. 227-231; MR0167004 (29 \#4277).
[29] S. R. Finch, Bloch-Landau constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 456-459.
[30] G. Szegö, Über eine Extremalaufgabe aus der Theorie der schlichten Abbildungen, Sitzungsberichte der Berliner Mathematische Gesellschaft 22 (1923) 38-47; corrigendum 23 (1924) 64; Collected Papers, v. 1, ed. R. Askey, Birkhäuser Verlag, 1982, pp. 607-618.
[31] D. Minda, Lower bounds for the hyperbolic metric in convex regions, Rocky Mountain J. Math. 13 (1983) 61-69; MR0692577 (84j:30039).
[32] E. Beller and J. A. Hummel, On the univalent Bloch constant, Complex Variables Theory Appl. 4 (1985) 243-252; MR0801641 (86i:30005).
[33] S. Y. Zhang, On the schlicht Bloch constant, Beijing Daxue Xuebao 25 (1989) 537-540 (in Chinese); MR1045870 (91a:30014).
[34] G. Markowsky, On the expected exit time of planar Brownian motion from simply connected domains, Elec. Commun. Probab. 16 (2011) 652-663; arXiv:1108.1188; MR2853103 (2012j:60228).
[35] G. Markowsky, A method for deriving hypergeometric and related identities from the H^{2} Hardy norm of conformal maps, Integral Transforms Spec. Funct. 24 (2013) 302-313; arXiv:1205.2458; MR3037253.
[36] S. R. Finch, Random triangles III, unpublished note (2010).
[37] S. R. Finch, Gambler's ruin, unpublished note (2008).
[38] F. B. Knight, Essentials of Brownian Motion and Diffusion, Amer. Math. Soc. 1981, pp. 70-71; MR0613983 (82m:60098).
[39] K. Helmes, S. Röhl and R. H. Stockbridge, Computing moments of the exit time distribution for Markov processes by linear programming, Oper. Res. 49 (2001) 516-530; MR1852358.
[40] M. W. Coffey, Expected exit times of Brownian motion from planar domains: Complements to a paper of Markowsky, arXiv:1203.5142.
[41] B. G. Galerkin, Torsion d'un prisme triangulaire, Bulletin de l'Académie des Sciences de Russie 13 (1919) 111-118.
[42] T. J. Higgins, A comprehensive review of Saint-Venant's torsion problem, Amer. J. Phys. 10 (1942) 248-259.
[43] G. E. Hay, The method of images applied to the problem of torsion, Proc. London Math. Soc. 45 (1939) 382-397; MR0000116 (1,21c).
[44] L.-C. Pan, Equilibrium, buckling and vibration of a $30^{\circ}-60^{\circ}-90^{\circ}$-triangular plate simply supported at the edges, Sci. Sinica 6 (1957) 347-379; MR0091635 (19,998c).
[45] T. Tsumura, On the torsion of prismatic cylinder with a regular polygonal section, Journal of the Society of Mechanical Engineers (Tokyo) 36 (1933) 60-63.
[46] J. L. Synge, The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems, Cambridge Univ. Press, 1957, pp. 214-270; MR0097605 (20 \#4073).
[47] E. Romanelli, M. J. Maurizi and L. A. Patricio, Torsion of bars of regular polygonal cross section, Journal of the Engineering Mechanics Division (ASCE) 98 (1972) 415-424.
[48] W. C. Hassenpflug, Torsion of uniform bars with polygon cross-section, Comput. Math. Appl. 46 (2003) 313-392; MR2015439 (2004i:74069).
[49] B. R. Seth. Torsion of beams whose cross-section is a regular polygon of n sides, Proc. Camb. Phil. Soc. 30 (1934) 139-149.
[50] E. E. Jones, The torsional rigidity of anisotropic prisms, J. Engineering Math. 9 (1975) 39-51; MR0411328 (53 \#15064).
[51] M. I. Aissen, On the Estimation and Computation of Torsional Rigidity, Ph.D. thesis, Stanford Univ., 1952.

[^0]: ${ }^{0}$ Copyright (C) 2005 by Steven R. Finch. All rights reserved.

