Characterization and Formula for A241010:

Numbers n with the property that the number of parts in the symmetric representation of $\sigma(n)$ is odd , and that all parts have width 1.

Hartmut F. W. Höft 2015-10-09

All references to notations, lemmas and theorems can be found in the link of A241561 mentioned above. The proofs of Lemmas A & B and the Theorem closely follow those of Lemmas 6 & 7 and Theorem 6 stated in the link cited above.

LEMMA A:

Let $n = 2^m \times q = 2^m \times \prod_{i=1}^k p_i^{e_i}$ with $m \ge 0$, $k \ge 0$, $2 < p_1 < ... < p_k$ primes, and $e_i \in \mathbb{N}$, $e_i \ge 1$, for all $1 \le i \le k$, be the prime factorization of n. Suppose that for all $1 \le i \le k$, e_i is even and that for any two odd divisors f < g of n, $2^{m+1} \times f < g$. Then $c_n = \sigma_0(q)$ is odd and $w_n = 1$.

PROOF:

Since every e_i , $1 \le i \le k$, is even we get $\sigma_0(q) = \sigma_0(\prod_{i=1}^k p_i^{e_i}) = \prod_{i=1}^k (e_i + 1)$ is odd. Suppose that the odd divisors of n are $1 = d_1 < ... < d_x < d_{x+1} < ... < d_{2x+1} = q$ where $2 \times x + 1 = \sigma_0(q)$. Then $d_y \times d_{2x+2-y} = q$, for all $1 \le y \le x$. By Lemma 1(e) the odd divisors d_{2x+1-y} , $1 \le y \le x$, are represented by 1's in positions $2^{m+1} \times d_y$ in the n-th row of irregular triangle A237048. Therefore, the condition $2^{m+1} \times f < g$ for any two odd divisors implies that 1's in odd and even positions alternate in that row and $w_n = 1$.

LEMMA B:

Let $n = 2^m \times q = 2^m \times \prod_{i=1}^k p_i^{e_i}$ with $m \ge 0$, $k \ge 0$, $2 < p_1 < ... < p_k$ primes, and $e_i \in \mathbb{N}$, $e_i \ge 1$, for all $1 \le i \le k$, be the prime factorization of n. If $c_n = \sigma_0(q)$ is odd and $w_n = 1$ then for all $1 \le i \le k$, e_i is even, and for any two odd divisors f < g of n, $2^{m+1} \times f < g$.

PROOF:

If k = 0 then n = 2^m and its symmetric representation has one region of width 1 (see the comments and links in A238443). Let now k > 0, then n must have at least one odd divisor greater than 1. Furthermore, since $c_n = \sigma_0(q) = \prod_{i=1}^{k} (e_i + 1)$ is odd all $e_i, 1 \le i \le k$, are even, and there is an odd number of 1's in the n-th row of irregular triangle A237048. Since $w_n = 1$ the positions of the odd divisors $d_i, 1 \le i \le \sigma_0(q) = 2 \times x + 1$, represented by 1's in the n-th row of irregular triangle A237048.

 $1 = d_1 < 2^{m+1} < d_2 < 2^{m+1} \times d_2 < \dots < d_x < 2^{m+1} \times d_x < d_{x+1} \le r_n.$ This chain of inequalities holds for all odd divisors since for $d_i \times d_{2x+2-i} = d_{i+1} \times d_{2x+1-i} = q$ we get $d_{2x+1-i} < d_{2x+2-i}$ so that $2^{m+1} \times d_{2x+1-i} = \frac{2^{m+1} \times d_i}{d_{i+1}} \times d_{2x+2-i} < d_{2x+2-i}.$

THEOREM:

For every number $n \in \mathbb{N}$ with prime factorization $n = 2^m \times q = 2^m \times \prod_{k=1}^{k} p_k^{e_k}$ with $m \ge 0, k \ge 0, 2 < p_1 < ... < p_k < 0$ p_k primes, and $e_i \in \mathbb{N}$, $e_i \ge 1$, for all $1 \le i \le k$:

 c_n is odd & $w_n = 1 \iff n \in A241010$

 \Leftrightarrow for all $1 \le i \le k$, e_i is even, and for any two odd divisors f < g of n, $2^{m+1} \times f < g$.

As in the proofs above, let the odd divisors of n be $1 = d_1 < ... < d_x < d_{x+1} < ... < d_{2x+1} = q$, where $2 \times x+1$ = $\sigma_0(q)$. The z-th region of n has area $a_z = \frac{1}{2} \times (2^{m+1} - 1) \times (d_z + d_{2x+2-z})$, for $1 \le z \le 2 \times x+1$, so that in this case $v_n = \sum_{z=1}^{2x+1} a_z = \sum_{z=1}^{2x+1} \frac{1}{2} \times (2^{m+1} - 1) \times (d_z + d_{2x+2-z}) = (2^{m+1} - 1) \times (\sum_{z=1}^{x} (d_z + d_{2x+2-z}) + d_{x+1}) = \sigma(n).$

PROOF:

The equivalences follow from Lemmas A & B. In order to verify the formula for the areas a_z , $1 \le z \le 2 \times$ x+1, we establish the following identities for the n-th row of irregular triangle E (A235791) that together show $v_n = \sigma(n)$ in this case. Since all regions have width 1, their respective areas are $-2^{m+1} \times d_{z} - 1 \epsilon$

$$\sum_{j=d_{z}}^{2^{m+1} \times d_{z}-1} f_{n,k} = e_{n,d_{z}} - e_{n,2^{m+1} \times d_{z}}, \text{ for all } 1 \le z \le x, \text{ and}$$

$$2 \times \sum_{j=d_{x+1}}^{r_{n}} f_{n,k} - 1 = 2 \times (n - \sum_{j=1}^{d_{x+1}-1} f_{n,k}) - 1 = 2 \times (n - e_{n,1} - e_{n,d_{x+1}}) - 1 = 2 \times e_{n,d_{x+1}} - 1 = (2^{m+1} - 1) \times d_{x+1},$$
for the center region a_{x+1} that crosses the diagonal of the Dyck path.

(i)
$$e_{n,2^{m+1}\times d_z} = e_{n-1,2^{m+1}\times d_z} + 1 = \frac{1}{2} \times \left(\frac{q}{d_z} - 1\right) - 2^m \times d_z + 1$$

(ii)
$$e_{n, d_z} = e_{n-1, d_z} + 1 = 2^m \times \frac{q}{d_z} - \frac{1}{2} (d_z + 1) + 1$$

-

(iii)
$$e_{n, d_z} e_{n, 2^{m+1} \times d_z} = \frac{1}{2} \times (2^{m+1} - 1) \times (d_z + d_{2x+2-z})$$

(iv)
$$e_{n, d_{x+1}} = \frac{1}{2} \times (2^{m+1} - 1) \times d_{x+1} + \frac{1}{2}$$

(v)
$$e_{n,k} = e_{n-1,k}$$
, for all $1 \le k \le r_n$ with $k \ne d_z$, $2^{m+1} \times d_z$,

Formulas (i) - (iv) are straightforward calculations. For (v) we argue as follows. Let $n = u \times k + v$ with $0 \le v \le k$. Then $e_{n,k} = \left[\frac{u \cdot k + v + 1}{k} - \frac{k + 1}{2}\right] = u + \left[\frac{v + 1}{k} - \frac{k + 1}{2}\right]$ and $e_{n-1,k} = u + \left[\frac{v}{k} - \frac{k + 1}{2}\right]$. If k is odd and $k \neq d_z$ for any $1 \le z \le x$ then $\left\lfloor \frac{v+1}{k} \right\rfloor = \left\lfloor \frac{v}{k} \right\rfloor = 1$. If k is even and $k \neq 2^{m+1} \star d_z$ for any $1 \le z \le x$ then $f_{n,k} = \mathsf{u} - \frac{k}{2} + \left\lceil \frac{v+1}{k} - \frac{1}{2} \right\rceil \text{ and } f_{n-1,k} = \mathsf{u} - \frac{k}{2} + \left\lceil \frac{v}{k} - \frac{1}{2} \right\rceil.$ Case $0 \le v < \frac{k}{2}$: $\left[\frac{v+1}{k}-\frac{1}{2}\right]=0=\left[\frac{v}{k}-\frac{1}{2}\right]$ since 2×v < k and k even imply 2×v + 2 ≤ k. Case $\frac{k}{2} < v < k$: $\left[\frac{v+1}{k} - \frac{1}{2}\right] = 1 = \left[\frac{v}{k} - \frac{1}{2}\right]$ since $0 < 2 \times v - k$. Case $\frac{k}{2} = v$: In this case $n = u \cdot k + v = u \cdot k + \frac{k}{2} = \frac{k}{2} \cdot (2 \cdot u + 1)$ so that $2 \cdot n = 2^{m+1} \cdot q = (2 \cdot u + 1) \cdot k$.

This implies that 2^{m+1} k and k = $2^{m+1} \times d_z$, for some z, contradicting the assumption on k.