Numbers $n=2^{k-1} \times p^{2 h}$
where $2^{k}<p$ and $p^{h} \leq \operatorname{row}(n)<2^{k} \times p^{h}$ and $p \geq 3$ is a Prime are Precisely those whose Symmetric Representation of $\sigma(\mathrm{n})$ Consists of an Odd Number Regions of Width I.

Hartmut F. W. Höft

2015-06-01

Notations

We use the definition of $T(n, i)=\left\lceil\frac{n+1}{i}-\frac{i+1}{2}\right\rceil$ for $1 \leq n$ and $1 \leq \mathrm{i} \leq\left\lfloor\frac{1}{2}(\sqrt{8 n+1}-1)\right\rfloor=\operatorname{row}(\mathrm{n})$, and $S(n, i)=T(n, i)-T(n, i+1)$ from A237591 and A237593, respectively. Observe that $T(n, 1)=n$.

Lemma

Let $n, k, h, p \in \mathbb{N}$ where $k \geq 1, h \geq 0$ and $p \geq 3$ is prime satisfying $2^{k}<p$. Equivalent are:
(1) $\mathrm{n}=2^{k-1} \times p^{2 h}$.
(a) $p^{h} \leq \operatorname{row}(\mathrm{n})<2^{k} \times p^{h}$,
(b.i) $T\left(n, p^{j}\right)=T\left(n-1, p^{j}\right)+1$, for all $0 \leq j \leq h$,
(b.ii) $T\left(n, 2^{k} p^{j}\right)=T\left(n-1,2^{k} p^{j}\right)+1$, for all $0 \leq j<h$,
(b.iii) $T\left(n, p^{j}\right)-T\left(n, 2^{k} p^{j}\right)=\frac{1}{2} \times\left(2^{k}-1\right) \times\left(p^{j}+p^{2 h-j}\right)$, for all $0 \leq \mathrm{j}<\mathrm{h}$,
(c) $\quad T(n, i)=T(n-1, i)$, for all $1<i \leq \operatorname{row}(n)$, except for $\mathrm{i} \neq p^{j}, 0 \leq \mathrm{j} \leq \mathrm{h}$, and $\mathrm{i} \neq 2^{k} p^{j}, 0 \leq \mathrm{j}<\mathrm{h}$.

Theorem

The symmetric representation of $\sigma(\mathrm{n})$ consists of an odd number of regions of width one precisely when $n=2^{k-1} \times p^{2 h}$, where $n, k, h, p \in \mathbb{N}, k \geq 1, h \geq 0$ and $p \geq 3$ is a prime satisfying $2^{k}<p$.
In this case there are $2 \times h+1$ regions in the symmetric representation of $\sigma(\mathrm{n})$ of respective sizes $\frac{1}{2} \times\left(2^{k}-1\right) \times\left(p^{j}+p^{2 h-j}\right), 0 \leq \mathrm{j} \leq 2 \times \mathrm{h}$. The first $\mathrm{j}=0, \ldots, \mathrm{~h}-1$ sections, symmetrically duplicated, start with the p^{j}-th leg in the Dyck path. The center section starts at leg p^{h}, extends symmetrically beyond the center of the path and has size $\left(2^{k}-1\right) \times p^{h}$.

Proof of Lemma "(I) \Rightarrow (2)"

(2.a) By definition, the number of elements in the n-th row of $T\left(n,{ }_{2}\right)$ is
$\operatorname{row}\left(2^{k-1} \times p^{2 h}\right)=\left\lfloor\frac{1}{2}\left(\sqrt{2^{k+2} \times p^{2 h}+1}-1\right)\right\rfloor$.
For the first inequality reduces to: $p^{h}+1 \leq 2^{k} \times p^{h}$
and the second to: $p^{h}<2^{k} \times p^{h}+1$
which hold since $h \geq 0, k \geq 1$ and $p \geq 3$.
(2.b) Since $2^{k}<p$ and $p^{h} \leq \operatorname{row}(n)$, all terms in section (2.b) are well-defined and direct evaluations establish the three claimed identities.
(2.c) For any $1<\mathrm{i} \leq \operatorname{row}(\mathrm{n})$, let $\mathrm{n}=\mathrm{q} \times \mathrm{i}+\mathrm{d}$ with $\mathrm{q}, \mathrm{i}, \mathrm{d} \in \mathbb{N}$ and $0 \leq \mathrm{d}<\mathrm{i}$.

Then $\mathrm{T}(\mathrm{n}, \mathrm{i})-\mathrm{T}(\mathrm{n}-1, \mathrm{i})=\left\lceil\frac{d+1}{i}-\frac{i+1}{2}\right\rceil-\left\lceil\frac{d}{i}-\frac{i+1}{2}\right\rceil$.
Let i be odd and assume that $\mathrm{d}=0$. Then $\mathrm{i} \mid \mathrm{n}$ so that $\mathrm{i}=p^{j}$, for $0 \leq \mathrm{j} \leq \mathrm{h}$, but those values are excluded.
Therefore, $\mathrm{d}>0$ and $\mathrm{T}(\mathrm{n}, \mathrm{i})-\mathrm{T}(\mathrm{n}-1, \mathrm{i})=\left\lceil\frac{d+1}{i}\right\rceil-\left\lceil\frac{d}{i}\right\rceil=1-1=0$.
Let i be even, say $i=2 \times s$. Then
$\mathrm{T}(\mathrm{n}, \mathrm{i})-\mathrm{T}(\mathrm{n}-1, \mathrm{i})=\left\lceil\frac{d+1}{2 s}-\frac{2 s+1}{2}\right\rceil-\left\lceil\frac{d}{2 s}-\frac{2 s+1}{2}\right\rceil=\left\lceil\frac{d+1}{2 s}-\frac{1}{2}\right\rceil-\left\lceil\frac{d}{2 s}-\frac{1}{2}\right\rceil$.
Case 1: $\mathrm{d}<\mathrm{s}$: Then each of the two terms equals zero.
Case 2: $d>s$: Then each of the two terms equals one.
Case 3: $d=s$: Then $n=2 \times q \times s+s=(2 \times q+1) \times s$ so that $2^{k-1} \mid s$. Therefore, $\mathrm{i}=2^{k} \times p^{j}$, for some $0 \leq \mathrm{j}<\mathrm{h}$, which is excluded, so that this case does not occur.

Proof of Lemma "(2) \Rightarrow (1)"

First, observe that assumptions $2^{k}<p$ and (2.a) insure that $T\left(n, p^{j}\right)$, for all $0 \leq j \leq h$, and $T\left(n, 2^{k} p^{j}\right)$, for all $0 \leq \mathrm{j}<\mathrm{h}$, are well defined.
Suppose that $n=q \times 2^{k-1} \times p^{j}+d$ with $q, d, j \in \mathbb{N}, 0 \leq j<h, k \geq 1$, and $0 \leq d<2^{k-1} \times p^{j}$.
From assumption (2.b.ii) we get:
$\mathrm{T}\left(n, 2^{k} p^{j}\right)=\left\lceil\frac{q \times 2^{k-1} \times p^{j}+d+1}{2^{k} \times p^{j}}-\frac{2^{k} \times p^{j}+1}{2}\right\rceil=\left\lceil\frac{q-1}{2}+\frac{d+1}{2^{k} p^{j}}\right\rceil-2^{k-1} p^{j}$
$\mathrm{T}\left(n-1,2^{k} p^{j}\right)=\left\lceil\frac{q \times 2^{k-1} \times p^{j}+d-1+1}{2^{k} \times p^{j}}-\frac{2^{k} \times p^{j}+1}{2}\right\rceil=\left\lceil\frac{q-1}{2}+\frac{d}{2^{k} \times p^{j}}\right\rceil-2^{k-1} \times p^{j}$
so that $\left\lceil\frac{q-1}{2}+\frac{d+1}{2^{k} \times p^{j}}\right\rceil=\left\lceil\frac{q-1}{2}+\frac{d}{2^{k} \times p^{j}}\right\rceil+1$.
If q is odd, then $\left\lceil\frac{d+1}{2^{k} \times p^{j}}\right\rceil=\left\lceil\frac{d}{2^{k} \times p^{j}}\right\rceil+1$, so that $\mathrm{d}=0$.
If q is even, then $\frac{q}{2}+\left\lceil\frac{-1}{2}+\frac{d+1}{2^{k} \times p^{j}}\right\rceil=\frac{q}{2}+\left\lceil\frac{-1}{2}+\frac{d}{2^{k} \times p^{j}}\right\rceil+1$ requires $\mathrm{d}=2^{k} \times p^{j}$, a contradiction.
Therefore, $2^{k-1} \times p^{j}, 0 \leq \mathrm{j}<\mathrm{h}$, is a divisor of n .
If 2^{k} divides n, say $n=z \times 2^{k}$ for some $z \in \mathbb{N}$, then
$\mathrm{T}\left(n, 2^{k}\right)=\left\lceil\frac{z \times 2^{k}+1}{2^{k}}-\frac{2^{k}+1}{2}\right\rceil=z-2^{k-1}+\left\lceil\frac{-1}{2}+\frac{1}{2^{k}}\right\rceil=z-2^{k-1}$
$T\left(n-1,2^{k}\right)=\left\lceil\frac{z \times 2^{k}-1+1}{2^{k}}-\frac{2^{k}+1}{2}\right\rceil=z-2^{k-1}+\left\lceil\frac{-1}{2}\right\rceil=z-2^{k-1}$
which contradicts (2.b.ii) so that 2^{k-1} is the largest power of two dividing n.
Similarly, let $n=a \times p^{h}+b$ with $a, b \in \mathbb{N}$ and $0 \leq b<p^{h}$ for prime $p \geq 3$. Then the expressions
$\mathrm{T}\left(\mathrm{n}, p^{h}\right)=\left\lceil\frac{a \times p^{h}+b+1}{p^{h}}-\frac{p^{h}+1}{2}\right\rceil=a-\frac{p^{h}+1}{2}+\left\lceil\frac{b+1}{p^{h}}\right\rceil$
$\mathrm{T}\left(\mathrm{n}-1, p^{h}\right)=\left\lceil\frac{a \times p^{h}+b-1+1}{p^{h}}-\frac{p^{h}+1}{2}\right\rceil=\mathrm{a}-\frac{p^{h}+1}{2}+\left\lceil\frac{b}{p^{h}}\right\rceil$
satisfy $\left\lceil\frac{b+1}{p^{h}}\right\rceil=\left\lceil\frac{b}{p^{h}}\right\rceil+1$ by (2.b.i), so that $\mathrm{b}=0$.
Therefore, p^{h} is a divisor of n. If n has an odd prime divisor $k \leq \operatorname{row}(n)$ with $k \neq p$ then $T(n, k)=$ $T(n-1, k)$ holds by assumption (2.c). This, in turn, implies $\left\lceil\frac{n+1}{k}\right\rceil=\left\lceil\frac{n}{k}\right\rceil$ which is a contradiction.
Therefore, p is the only odd prime divisor less than row(n).
Finally, suppose that $n=s \times 2^{k-1} \times p^{h}$ with $1 \leq s \in \mathbb{N}$. Note that s must be odd. Then we get:
$\mathrm{T}(\mathrm{n}, 1)-\mathrm{T}\left(n, 2^{k}\right)=\mathrm{s} \times 2^{k-1} \times p^{h}-\left\lceil\frac{s \times 2^{k-1} \times p^{h}+1}{2^{k}}-\frac{2^{k}+1}{2}\right\rceil$
$=s \times 2^{k-1} \times p^{h}-\frac{s \times p^{h}-1}{2}+2^{k-1}-\left\lceil\frac{1}{2^{k}}\right\rceil=\frac{1}{2} \times\left(s \times 2^{k} \times p^{h}-s \times p^{h}+1+2^{k}-2\right)$
$=\frac{1}{2} \times\left(\left(2^{k}-1\right) \times s \times p^{h}+\left(2^{k}-1\right)\right)=\frac{1}{2} \times\left(2^{k}-1\right) \times\left(s \times p^{h}+1\right)$.

Now condition (2.b.iii) with $\mathrm{j}=0$ leads to equation:
$\frac{1}{2} \times\left(2^{k}-1\right) \times\left(s \times p^{h}+1\right)=\frac{1}{2} \times\left(2^{k}-1\right) \times\left(p^{2 h}+1\right)$.
In other words, $\mathrm{s}=\mathrm{p}^{h}$, and $\mathrm{n}=2^{k-1} \times p^{2 h}$.

Proof of Theorem

The lengths of the segments in the symmetric Dyck paths that bound the first half of the symmetric representation of $\sigma(\mathrm{n})$ are given by:

$$
S(n, k)=T(n, k)-T(n, k+1) \text { for } 1 \leq n \text { and } 1 \leq k \leq \operatorname{row}(n) \text {. }
$$

The four conditions (2.a), (2.b.i), (2.b.ii) \& (2.c) together with $T(n, 1)=n$ imply that the first h regions of $\sigma(\mathrm{n})$ extend from $\mathrm{T}\left(\mathrm{n}, p^{j}\right)$ through $\mathrm{T}\left(\mathrm{n}, 2^{k} p^{j}\right)$ and have width 1 , for all $0 \leq \mathrm{j}<\mathrm{h}$, and that the region starting at leg p^{h} extends beyond the center of the Dyck path. The formula in (2.b.iii) establishes the size of each of the h symmetrically duplicated regions. so that with $\sigma(\mathrm{n})=\left(2^{k}-1\right) \sum_{j=0}^{2 h} p^{j}$, the size of the central region equals $\left(2^{k}-1\right) \times p^{h}$.

