Numbers $n = 2^{k-1} * p^{2h}$ where $2^k < p$ and $p^h \le row(n) < 2^k * p^h$ and $p \ge 3$ is a Prime are Precisely those whose Symmetric Representation of $\sigma(n)$ Consists of an Odd Number Regions of Width 1.

Hartmut F. W. Höft 2015-06-01

Notations

We use the definition of $T(n, i) = \left\lceil \frac{n+1}{i} - \frac{i+1}{2} \right\rceil$ for $1 \le n$ and $1 \le i \le \left\lfloor \frac{1}{2} \left(\sqrt{8n+1} - 1 \right) \right\rfloor$ = row(n), and S(n, i) = T(n, i) - T(n, i+1) from A237591 and A237593, respectively. Observe that T(n, 1) = n.

Lemma

Let n, k, h, $p \in \mathbb{N}$ where $k \ge 1$, $h \ge 0$ and $p \ge 3$ is prime satisfying $2^k < p$. Equivalent are:

- (1) $n = 2^{k-1} \times p^{2h}$.
- (2) (a) $p^h \leq \operatorname{row}(n) < 2^k \times p^h$,
 - (b.i) $T(n, p^{j}) = T(n 1, p^{j}) + 1$, for all $0 \le j \le h$,
 - (b.ii) $T(n, 2^k p^j) = T(n 1, 2^k p^j) + 1$, for all $0 \le j \le h$,
 - (b.iii) $T(n, p^{j}) T(n, 2^{k}p^{j}) = \frac{1}{2} \times (2^{k} 1) \times (p^{j} + p^{2h-j})$, for all $0 \le j \le h$,
 - (c) T(n, i) = T(n 1, i), for all $1 < i \le row(n)$, except for $i \ne p^j$, $0 \le j \le h$, and $i \ne 2^k p^j$, $0 \le j < h$.

Theorem

The symmetric representation of $\sigma(n)$ consists of an odd number of regions of width one precisely when $n = 2^{k-1} \cdot p^{2h}$, where n, k, h, $p \in \mathbb{N}$, $k \ge 1$, $h \ge 0$ and $p \ge 3$ is a prime satisfying $2^k < p$. In this case there are $2 \cdot h + 1$ regions in the symmetric representation of $\sigma(n)$ of respective sizes $\frac{1}{2} \cdot (2^k - 1) \cdot (p^j + p^{2h-j})$, $0 \le j \le 2 \cdot h$. The first j = 0, ..., h-1 sections, symmetrically duplicated, start with the p^j -th leg in the Dyck path. The center section starts at leg p^h , extends symmetrically beyond the center of the path and has size $(2^k - 1) \cdot p^h$.

Proof of Lemma "(1) \Rightarrow (2)"

(2.a) By definition, the number of elements in the n-th row of $T(n, _)$ is

$$\operatorname{row}(2^{k-1} \times p^{2h}) = \left\lfloor \frac{1}{2} \left(\sqrt{2^{k+2} \times p^{2h} + 1} - 1 \right) \right\rfloor.$$

For the first inequality reduces to: $p^h + 1 \le 2^k \cdot p^h$ and the second to: $p^h < 2^k \cdot p^h + 1$ which hold since $h \ge 0, k \ge 1$ and $p \ge 3$.

(2.b) Since $2^k < p$ and $p^h \le row(n)$, all terms in section (2.b) are well-defined and direct evaluations establish the three claimed identities.

(2.c) For any $1 < i \le row(n)$, let $n = q \times i + d$ with q, i, $d \in \mathbb{N}$ and $0 \le d < i$. Then $T(n, i) - T(n - 1, i) = \left\lceil \frac{d+1}{i} - \frac{i+1}{2} \right\rceil - \left\lceil \frac{d}{i} - \frac{i+1}{2} \right\rceil$. Let i be odd and assume that d = 0. Then i|n so that $i = p^{j}$, for $0 \le j \le h$, but those values are excluded. Therefore, d > 0 and $T(n, i) - T(n - 1, i) = \left\lceil \frac{d+1}{i} \right\rceil - \left\lceil \frac{d}{i} \right\rceil = 1 - 1 = 0$. Let i be even, say $i = 2 \times s$. Then $T(n, i) - T(n - 1, i) = \left\lceil \frac{d+1}{2s} - \frac{2s+1}{2} \right\rceil - \left\lceil \frac{d}{2s} - \frac{2s+1}{2} \right\rceil = \left\lceil \frac{d+1}{2s} - \frac{1}{2} \right\rceil - \left\lceil \frac{d}{2s} - \frac{1}{2} \right\rceil$. Case 1: d < s : Then each of the two terms equals zero. Case 2: d > s : Then each of the two terms equals one. Case 3: d = s : Then $n = 2 \times q \times s + s = (2 \times q + 1) \times s$ so that $2^{k-1}|s$. Therefore, $i = 2^{k} \times p^{j}$, for some $0 \le j < h$, which is excluded, so that this case does not occur.

Proof of Lemma "(2) \Rightarrow (1)"

First, observe that assumptions $2^k < p$ and (2.a) insure that $T(n, p^j)$, for all $0 \le j \le h$, and $T(n, 2^k p^j)$, for all $0 \le j < h$, are well defined.

Suppose that $n = q \times 2^{k-1} \times p^j + d$ with $q, d, j \in \mathbb{N}$, $0 \le j \le h, k \ge 1$, and $0 \le d \le 2^{k-1} \times p^j$. From assumption (2.b.ii) we get: $T(n, 2^{k}p^{j}) = \left\lceil \frac{q \times 2^{k-1} \times p^{j} + d + 1}{2^{k} \times p^{j}} - \frac{2^{k} \times p^{j} + 1}{2} \right\rceil = \left\lceil \frac{q-1}{2} + \frac{d+1}{2^{k}p^{j}} \right\rceil - 2^{k-1}p^{j}$ $T(n-1, 2^{k}p^{j}) = \left\lceil \frac{q \times 2^{k-1} \times p^{j} + d - 1 + 1}{2^{k} \times p^{j}} - \frac{2^{k} \times p^{j} + 1}{2} \right\rceil = \left\lceil \frac{q-1}{2} + \frac{d}{2^{k} \times p^{j}} \right\rceil - 2^{k-1} \times p^{j}$ so that $\left[\frac{q-1}{2} + \frac{d+1}{2^k \star p'}\right] = \left[\frac{q-1}{2} + \frac{d}{2^k \star p'}\right] + 1.$ If q is odd, then $\left\lceil \frac{d+1}{2^k \times p'} \right\rceil = \left\lceil \frac{d}{2^k \times p'} \right\rceil + 1$, so that d = 0. If q is even, then $\frac{q}{2} + \left[\frac{-1}{2} + \frac{d+1}{2^k \times p^i}\right] = \frac{q}{2} + \left[\frac{-1}{2} + \frac{d}{2^k \times p^j}\right] + 1$ requires $d = 2^k \times p^j$, a contradiction. Therefore, $2^{k-1} \times p^{j}$, $0 \le j \le h$, is a divisor of n. If 2^k divides n, say $n = z \times 2^k$ for some $z \in \mathbb{N}$, then $T(n, 2^{k}) = \left\lceil \frac{z \times 2^{k} + 1}{2^{k}} - \frac{2^{k} + 1}{2} \right\rceil = z - 2^{k-1} + \left\lceil \frac{-1}{2} + \frac{1}{2^{k}} \right\rceil = z - 2^{k-1}$ $T(n-1, 2^{k}) = \left[\frac{z \times 2^{k} - 1 + 1}{2^{k}} - \frac{2^{k} + 1}{2}\right] = z - 2^{k-1} + \left[\frac{-1}{2}\right] = z - 2^{k-1}$ which contradicts (2.b.ii) so that 2^{k-1} is the largest power of two dividing n. Similarly, let $n = a \times p^h + b$ with $a, b \in \mathbb{N}$ and $0 \le b < p^h$ for prime $p \ge 3$. Then the expressions $\mathsf{T}(\mathsf{n},p^h) = \left\lceil \frac{a \times p^h + b + 1}{p^h} - \frac{p^h + 1}{2} \right\rceil = a - \frac{p^h + 1}{2} + \left\lceil \frac{b + 1}{p^h} \right\rceil$ $T(n - 1, p^{h}) = \left[\frac{a \times p^{h} + b - 1 + 1}{p^{h}} - \frac{p^{h} + 1}{2}\right] = a - \frac{p^{h} + 1}{2} + \left[\frac{b}{p^{h}}\right]$ satisfy $\left\lceil \frac{b+1}{p^{h}} \right\rceil = \left\lceil \frac{b}{p^{h}} \right\rceil + 1$ by (2.b.i), so that b = 0. Therefore, p^h is a divisor of n. If n has an odd prime divisor $k \le row(n)$ with $k \ne p$ then T(n, k) =T(n - 1, k) holds by assumption (2.c). This, in turn, implies $\left\lceil \frac{n+1}{k} \right\rceil = \left\lceil \frac{n}{k} \right\rceil$ which is a contradiction. Therefore, p is the only odd prime divisor less than row(n). Finally, suppose that $n = s \times 2^{k-1} \times p^h$ with $1 \le s \in \mathbb{N}$. Note that s must be odd. Then we get: $T(n, 1) - T(n, 2^{k}) = s \times 2^{k-1} \times p^{h} - \left[\frac{s \times 2^{k-1} \times p^{h+1}}{2^{k}} - \frac{2^{k+1}}{2}\right]$ $= s \times 2^{k-1} \times p^{h} - \frac{s \times p^{h} - 1}{2} + 2^{k-1} - \left[\frac{1}{2^{k}}\right] = \frac{1}{2} \times \left(s \times 2^{k} \times p^{h} - s \times p^{h} + 1 + 2^{k} - 2\right)$ $= \frac{1}{2} \times ((2^{k} - 1) \times s \times p^{h} + (2^{k} - 1)) = \frac{1}{2} \times (2^{k} - 1) \times (s \times p^{h} + 1).$

Now condition (2.b.iii) with j = 0 leads to equation: $\frac{1}{2} \times (2^{k} - 1) \times (s \times p^{h} + 1) = \frac{1}{2} \times (2^{k} - 1) \times (p^{2h} + 1).$ In other words, $s = p^{h}$, and $n = 2^{k-1} \times p^{2h}$.

Proof of Theorem

The lengths of the segments in the symmetric Dyck paths that bound the first half of the symmetric representation of $\sigma(n)$ are given by:

S(n, k) = T(n, k) - T(n, k + 1) for $1 \le n$ and $1 \le k \le row(n)$.

The four conditions (2.a), (2.b.i), (2.b.ii) & (2.c) together with T(n, 1) = n imply that the first h regions of $\sigma(n)$ extend from $T(n, p^{j})$ through $T(n, 2^{k}p^{j})$ and have width 1, for all $0 \le j < h$, and that the region starting at leg p^{h} extends beyond the center of the Dyck path. The formula in (2.b.iii) establishes the size of each of the h symmetrically duplicated regions. so that with $\sigma(n) = (2^{k} - 1) \sum_{j=0}^{2h} p^{j}$, the size of the central region equals $(2^{k} - 1) \times p^{h}$.