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We use the definition of  T(n, i) = 
n + 1
i

-
i + 1
2
  for  1 ≤ n  and  1 ≤ i ≤ 

1
2

8 n + 1 - 1  = row(n), and  

S(n, i) = T(n, i) - T(n, i + 1)  from A237591 and A237593, respectively.  Observe that  T(n, 1) = n.
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Let  n, k, h, p ∈ ℕ  where  k ≥ 1, h ≥ 0  and  p ≥ 3 is prime satisfying  2k < p.  Equivalent are:
(1) n = 2k-1⨯ p2 h.
(2) (a) ph ≤ row(n) < 2k ⨯ ph,

(b.i) T(n, pj) = T(n - 1, pj) + 1, for all  0 ≤ j ≤ h,
(b.ii) T(n, 2kpj) = T(n - 1, 2kpj) + 1, for all  0 ≤ j < h,

(b.iii) T(n, pj)  - T(n, 2kpj) = 

1
2
⨯2k - 1⨯pj + p2 h - j, for all  0 ≤ j < h,

(c) T(n, i) = T(n - 1, i),  for all  1 < i ≤ row(n), 
except for  i ≠ pj, 0 ≤ j ≤ h, and  i ≠ 2k pj, 0 ≤ j < h.
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The symmetric representation of  σ(n)  consists of an odd number of regions of width one precisely 
when  n = 2k-1⨯ p2 h, where  n, k, h, p ∈ ℕ, k ≥ 1, h ≥ 0  and  p ≥ 3  is a prime satisfying  2k < p.

In this case there are  2⨯h + 1  regions in the symmetric representation of  σ(n)  of respective sizes  
1
2
⨯2k - 1⨯pj + p2 h - j, 0 ≤ j ≤ 2⨯h.  The first j = 0, … , h-1 sections, symmetrically duplicated, start 

with the  pj-th leg in the Dyck path.  The center section starts at leg  ph, extends symmetrically beyond 

the center of the path and has size  2k - 1⨯ph.
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(2.a) By definition, the number of elements in the n-th row of  T(n, _)  is

row2k - 1⨯p2 h  = 

1
2

2k + 2⨯p2 h + 1 - 1 . 

For the first inequality reduces to:  ph + 1  ≤  2k⨯ph  

and the second to:  ph  <  2k⨯ph + 1
which hold since  h ≥ 0, k ≥ 1  and  p ≥ 3.

(2.b) Since  2k < p  and  ph ≤ row(n), all terms in section (2.b) are well-defined and direct 
evaluations establish the three claimed identities.



(2.c) For any  1 < i ≤ row(n), let n = q ⨯ i + d  with  q, i, d ∈ ℕ  and 0 ≤ d < i.

Then  T(n, i) - T(n - 1, i)  =  
d + 1
i

-
i + 1
2
-  d

i
-
i + 1
2
.

Let  i  be odd and assume that  d = 0.  Then  i|n  so that  i = pj, for  0 ≤ j ≤ h,
but those values are excluded.  

Therefore, d > 0  and  T(n, i) - T(n - 1, i)  = 
d + 1
i
 - 

d
i
= 1 - 1 = 0. 

Let  i  be even, say  i = 2⨯s.  Then  

T(n, i) - T(n - 1, i)  = 
d + 1
2 s

-
2 s + 1
2

 -  d
2 s

-
2 s + 1
2

 = 
d + 1
2 s

-
1
2
 -  d

2 s
-
1
2
.

Case 1:  d < s  :  Then each of the two terms equals zero.
Case 2:  d > s  :  Then each of the two terms equals one.
Case 3:  d = s  :  Then  n = 2⨯q⨯s + s = (2⨯q + 1)⨯s  so that  2k-1|s.  Therefore,
i = 2k⨯ pj, for some  0 ≤ j < h, which is excluded, so that this case does not occur.

����������������“����⇒����”

First, observe that assumptions  2k < p  and  (2.a)  insure that  T(n, pj), for all  0 ≤ j ≤ h, and  T(n, 2kpj), 
for all  0 ≤ j < h, are well defined.

Suppose that  n = q ⨯ 2k-1⨯ pj + d  with  q, d, j ∈ ℕ, 0 ≤ j < h, k ≥ 1, and  0 ≤ d < 2k-1 ⨯ pj.
From assumption (2.b.ii) we get:

Tn, 2k pj  = 
q⨯2k-1⨯pj+ d + 1

2k⨯pj
-
2k⨯pj + 1

2
 =  

q - 1
2

+
d + 1
2k pj

 - 2k-1 pj

Tn - 1, 2k pj  =  
q⨯2k-1⨯pj+ d - 1 + 1

2k⨯pj
-
2k⨯pj + 1

2
 =  

q - 1
2

+
d

2k⨯pj
 - 2k-1⨯pj

so that   q - 1
2

+
d + 1
2k⨯pj

 = 
q - 1
2

+
d

2k⨯pj
 + 1.  

If  q  is odd, then  
d + 1
2k⨯pj

 = 
d

2k⨯pj
 + 1, so that  d = 0.

If  q  is even, then  

q
2
 + 

-1
2
+

d + 1
2k⨯pj

 = 

q
2
 + 

-1
2
+

d
2k⨯pj

 + 1  requires  d = 2k⨯pj , a contradiction.

Therefore, 2k-1⨯pj, 0 ≤ j < h, is a divisor of  n.

If  2k  divides  n, say  n = z ⨯ 2k  for some  z ∈ ℕ, then  

Tn, 2k = 
z ⨯ 2k + 1
2k

-
2k + 1
2

 = z - 2k-1 + 
-1
2
+

1
2k
 = z - 2k-1

Tn - 1, 2k = 
z ⨯ 2k - 1 + 1

2k
-
2k + 1
2

 = z - 2k-1 + 
-1
2
= z - 2k-1

which contradicts (2.b.ii) so that  2k - 1 is the largest power of two dividing  n.

Similarly, let  n = a ⨯ ph + b  with  a, b ∈ ℕ  and  0 ≤ b < ph  for prime  p ≥ 3.  Then the expressions 

T(n, ph) = 
a ⨯ ph + b + 1

ph
-
ph + 1
2

=  a - p
h + 1
2

 + 
b + 1
ph



T(n - 1, ph) = 
a ⨯ ph+ b - 1 + 1

ph
-
ph + 1
2

= a - p
h + 1
2

 + 
b
ph


satisfy   b + 1
ph

 = 
b
ph
 + 1  by (2.b.i), so that  b = 0.

Therefore, ph  is a divisor of  n.  If  n  has an odd prime divisor  k ≤ row(n)  with  k ≠ p  then  T(n, k) = 

T(n - 1, k)  holds by assumption (2.c).  This, in turn, implies   n + 1
k

 = 
n
k
  which is a contradiction.  

Therefore, p  is the only odd prime divisor less than  row(n).  

Finally, suppose that  n = s ⨯ 2k- 1⨯ ph  with  1 ≤ s ∈ ℕ.  Note that  s  must be odd.  Then we get:

T(n, 1) - Tn, 2k  =  s ⨯ 2k- 1⨯ ph  -  s ⨯ 2k - 1⨯ ph + 1
2k

-
2k + 1
2

 

=   s ⨯ 2k- 1⨯ ph -  s ⨯ p
h - 1
2

  +  2k-1  -  1
2k
 =  

1
2
⨯s⨯2k⨯ph - s⨯ph + 1 + 2k - 2

=  

1
2
⨯2k - 1⨯s⨯ph + 2k - 1  =   

1
2
⨯2k - 1⨯s⨯ph + 1 .

2 ���  sigma(n) has odd regions of width one precisely when n = 2^(k-1)*p^(2h).nb



Now condition (2.b.iii) with  j = 0  leads to equation:
1
2
⨯2k - 1⨯s⨯ph + 1  =  

1
2
⨯2k - 1⨯p2 h + 1.

In other words, s = ph, and  n = 2k-1⨯ p2 h.
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The lengths of the segments in the symmetric Dyck paths that bound the first half of the symmetric 
representation of  σ(n)  are given by:  

S(n, k) = T(n, k)  - T(n, k + 1)  for  1 ≤ n  and  1 ≤ k ≤ row(n).

The four conditions (2.a), (2.b.i), (2.b.ii) & (2.c) together with  T(n, 1) = n  imply that the first  h  regions 
of  σ(n)  extend from  T(n, pj)  through  T(n, 2kpj)  and have width 1, for all  0 ≤ j < h, and that the region 

starting at leg  ph  extends beyond the center of the Dyck path.  The formula in (2.b.iii) establishes the 

size of each of the  h  symmetrically duplicated regions. so that with  σ(n) = 2k - 1 ∑ j = 0
2 h pj, the size of 

the central region equals  2k - 1⨯ph.

sigma(n) has odd regions of width one precisely when n = 2^(k-1)*p^(2h).nb  ���3


