%I #7 Apr 14 2014 11:21:47
%S 123457189,123459289,123465253,123466789,123470713,123481753,
%T 123482389,123486373,123489913,123501733,123505189,123510613,
%U 123535189,123545593,123564373,123571033,123584953,123587833,123592213,123610453,123631513,123641689,123657493
%N Primes p of the form n^2 + 123456789 where 123456789 is the first zeroless pandigital number.
%H K. D. Bajpai, <a href="/A240587/b240587.txt">Table of n, a(n) for n = 1..1111</a>
%e 123457189 is a prime and appears in the sequence because 123457189 = 20^2 + 123456789.
%e 123459289 is a prime and appears in the sequence because 123459289 = 50^2 + 123456789.
%p KD := proc() local a; a:=n^2+123456789; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
%t Select[Table[k^2+123456789,{k,1,3000}],PrimeQ]
%Y Cf. A000040, A002496, A028871, A050289, A056899.
%K nonn,base
%O 1,1
%A _K. D. Bajpai_, Apr 08 2014