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Abstract

In this dissertation, we discuss properties of the Stern sequence, denoted by s(n), and define a related

sequence. First, we give a brief historical background and known results. We then discuss the second and

third largest values for the Stern sequence, as well as the asymptotics when a value m will first appear in a

row in the diatomic array. We also investigate the distribution of values for the Stern sequence, as well as

the gaps of the ordered values from a row.

After this, we investigate the properties of the related sequence called w(n) := 1
2s(3n). We give recur-

rences for the sequence and find generalized recurrences and a reduction formula. We attempt to find a

combinatorial interpretation for w(n), as well as a generating function for the sequence. We also find the

largest value of w(n) for a row of its triangular array. We consider sums of w(n) and the average order of

magnitude, which is the same average order of the Stern sequence. We also examine the greatest common

divisor of consecutive terms, as well as the sequence w(n) modulo 2. Finally, we define a polynomial analogue

and investigate some of its properties.
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11.2 Zeros of ŵ(n, x) up to n = 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11.3 Zeros of S(n, x) up to n = 211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



Chapter 1

Introduction to the Stern sequence

In this chapter, we give a historical background of the Stern sequence, as well as discuss some more modern

results. We then summarize some important properties, and introduce a related sequence.

1.1 A Historical Background

In his 1858 paper [34], Stern investigated the properties of a sequence constructed in a similar way to Pascal’s

triangle. He constructed a triangular array, called the diatomic array, by taking two values a and b, which

form the first row, and then the next row is formed by rewriting the previous row and inserting the sum

a+ b between its summands. Eisenstein was originally interested in sequences of this type, and asked Stern

to consider them as well. Stern studied the properties of this general array, but he also examined the case

where a = b = 1. The diatomic array with initial values of (1, 1) is given in Table 1.1. In Table 1.2 the

1 1
1 2 1

1 3 2 3 1
1 4 3 5 2 5 3 4 1

1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10 7 11 4 9 5 6 1

Table 1.1: Diatomic Array for s(n)

starting values are (0, 1), and the array looks more like a sequence since the previous row appears at the

start of the next row. In functional notation, the Stern sequence is denoted s(n), and the r-th row of the

(0, 1) array in Table 1.2 is given by s(n) for 0 ≤ n ≤ 2r.

0 1
0 1 1

0 1 1 2 1
0 1 1 2 1 3 2 3 1

0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1
0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7 5 3 3 7 4 5 1

Table 1.2: (0, 1) Diatomic Array

1



The r-th row of the (1, 1) diatomic array is given by s(n) for 2r ≤ n ≤ 2r+1. We will focus on the array

starting with (1, 1), and this will be the assumed reference below if a specific reference is not given.

Stern proved numerous properties of the Stern sequence, and these are also summarized in D.H. Lehmer’s

paper [24] from 1929. We also list some of the properties for handy reference:

• The number of terms in the r-th row is 2r + 1, and their sum is 3r + 1.

• The number of terms up to and including the r-th row is 2r+1 + r and their sum is 1
2 (3r+1 + 1) + r.

• The average value of the r-th row is approximately (3/2)r.

• The diatomic array is symmetric: the n-th term in the r-th row is equal to the (2r + 2− n)-th term.

• In the sequence of terms, (s(n) + s(n+ 2))/s(n+ 1) is always an integer.

• Two consecutive terms are relatively prime.

• The pair (a, b) occurs at most once in the diatomic array.

• If gcd(a, b) = 1, then the pair (a, b) appears in the line whose whose number is one less than the sum

of continuants in the expansion of a/b in a regular continued fraction.

• The number of times an element m appears in the (m− 1)-th and all succeeding rows is φ(m).

• The number p is a prime if and only if it appears (p− 1) times in the (p− 1)-th row.

In 1878, Lucas [26] studied Stern’s sequence, and noted that the largest value in the r-th row is Fr+2,

occurring roughly at one third and two thirds of the way in the row. For more on this topic, see Chapter 2.

In 1861, a French clockmaker named Brocot [4] independently created an array of fractions representing

gear ratios. This array was very similar to Stern’s array, and the fractions correspond to s(n)/s(2r − n).

The connection between these two series was known in the 19th century. In Dickson’s History of the Theory

of Numbers from 1919 [10, p. 156], the sequences that Stern and Brocot studied are listed right next to each

other, with Lucas’s results on the maximum value following right after. De Rham [9], in his 1947 paper, also

discussed Stern’s sequence in connection with Brocot’s series, as well as Minkowski’s ?-function, and these

are related to a geometry problem. De Rham also gave recurrence relations for the Stern sequence:

s(2n) = s(n), s(2n+ 1) = s(n+ 1) + s(n), with s(0) = 0 and s(1) = 1. (1.1)

Hermes, a German mathematician, considered sequences of the type that Stern investigated. In his 1894

paper [18], Hermes considered a sequence which turned out to be s(2n+1) and found that this was connected

2



to the binary representation of numbers. This information is essentially mentioned in Dickson’s History of

of the Theory of Numbers ([10, p. 158]). Then in 1902, Bachmann [3], in his book Niedere Zahlentheorie,

summarized many properties of the Stern sequence and examined them in the context of the Euclidean

algorithm and continued fractions.

1.2 Modern Approaches

In 1962-1965, Carlitz independently discovered the Stern sequence, but in the context of Stirling numbers

of the second kind. In his first paper [6], Carlitz mentioned a function θ0(n), which happens to be s(n+ 1).

The interpretation for this sequence is the number of odd coefficients in a polynomial related to polynomials

of Stirling numbers of the second kind. He then gave the generating function

∞∏
n=0

(
1 + x2

n

+ x2
n+1
)

(1.2)

for the sequence. His second paper [7] more specifically studied θ0(n). He gave the generating function, as

well as the combinatorial interpretation that θ0(n) gives the number of binary partitions of an integer n,

with each part appearing at most twice. He also gives the reduction formula which is equivalent to

s(2rn+ 1) = rs(n) + s(n+ 1),

with the following properties as consequences:

s(2rn) = s(n), s(2r) = 1, and s(2r + 1) = r + 1.

His third paper [8] still discussed some properties of θ0(n), but he focused more on Stirling numbers of the

second kind. Then in 1969, Lind [25] presented the connection between Stern’s sequence, D.H. Lehmer’s

paper, and the work of Carlitz. The paper gives a brief summary of known properties for the Stern sequence.

Around 1976, Dijkstra [11] also independently discovered Stern’s sequence, calling it fusc(n).

There have been numerous papers on further properties of the Stern sequence. In 1990, Reznick [28]

discussed binary partition functions, and connected these to the Stern sequence. This gave a combinatorial

interpretation of the Stern sequence, as well as the generating function given in (1.2). In 2000, Calkin and

Wilf [5] discussed a tree of fractions (which is essentially the Stern-Brocot array), which gives an explicit

enumeration of the positive rationals. However, in 1877 Halphen [17] noted that the Stern-Brocot array gave

3



every reduced positive rational exactly once. Since this paper was in French, it is not clear how well known

this result was. In the 1994 edition of their book Concrete Mathematics, Graham, Knuth, and Patashnik

[16, p. 116-117] discuss the Stern-Brocot array and mention that all possible fractions appear exactly once.

While Stern had already proven the necessary information used in the proof of the enumeration in [5], Stern’s

paper was about 15 years before Cantor came up with the question of enumeration. In [27], Reznick also

noted that the Stern sequence gave an explicit enumeration of the positive rationals, and gave many other

properties of the Stern sequence as well.

A polynomial analogue was also introduced by Stolarsky and Dilcher (see [12, 13]). They defined a

polynomial analogue by

a(2n, x) = a(n, x2), a(2n+ 1, x) = xa(n, x2) + a(n+ 1, x2) for n ≥ 1,

with a(0, x) = 0 and a(1, x) = 1. The first few polynomials are

1, 1, 1 + x, 1, 1 + x+ x2, 1 + x2, 1 + x+ x3, 1, 1 + x+ x2 + x4.

This is called an analogue of the Stern sequence because a(n, 1) = s(n). Klavžar, Milutinović, and Petr [22]

defined a different polynomial analogue:

S(2n, x) = xS(n, x), and S(2n+ 1, x) = S(n, x) + S(n+ 1, x) for n ≥ 1,

with S(0, x) = 0 and S(1, x) + 1. The first few polynomials are

0, 1, x, 1 + x, x2, 1 + 2x, x(1 + x), 1 + x+ x2.

In Chapter 11, we discuss more about polynomial analogues.

The Stern sequence can also be found in the online encyclopedia of integer sequences as entry A002487

[32].

1.3 More Properties of the Stern Sequence

The Stern sequence satisfies the recurrence relations

s(2n) = s(n), s(2n+ 1) = s(n+ 1) + s(n), with s(0) = 0 and s(1) = 1.

4



Since s(2n) = s(n), this recurrence implies s(2kn) = s(n), and we also have that s(2k) = 1. The Stern

sequence also satisfies another recurrence formula, given in [27]: for 0 ≤ j ≤ 2r, we have

s(2rn± j) = s(2r − j)s(n) + s(j)s(n± 1). (1.3)

A consequence of this formula is

s(2r − 1) = r and s(2r + 1) = r + 1. (1.4)

Also note that the Stern sequence follows a see-saw pattern in values:

s(2n) < s(2n+ 1) and s(2n+ 2) < s(2n+ 1). (1.5)

Since s(2n+ 1) = s(n+ 1) + s(n), we have s(2n+ 1) > s(n) = s(2n) and s(2n+ 1) > s(n+ 1) = s(2n+ 2).

The Stern sequence has lots of symmetry, especially when written in rows with the r-th row consisting

of the elements

s(2r), s(2r + 1), . . . , s(2r+1).

This symmetry is referenced in Stern’s paper, as well as Lehmer’s paper. However, we define the symmetry

in a different way than what was given in the list of properties of [24]. Define n∗ = 3·2r−n for 2r < n < 2r+1.

In Table 1.1, we see these rows have reflectional symmetry, which shows that s(n) = s(n∗). There is also a

more subtle type of symmetry. Consider the binary representation for n and define←−n to be the reversal of the

binary digits of n. For example, if n = 19 = [10011]2, this is in row r = 4, and we have
←−
19 = [11001]2 = 25,

n∗ = 3 · 24 − 19 = 29 = [11101]2, and
←−
n∗ = [10111]2 = 23. We have that s(19) = s(29) = 7 = s(23) = s(25).

In fact, this holds true for all n, so we have

s(n) = s(n∗) = s(←−n ) = s(
←−
n∗).

Reznick [29] has shown
←−
n∗ =←−n ∗ and that s(n) = s(←−n ). These two symmetries form a nice group with four

elements, and these elements will always have the same Stern value. However, there are two special cases

where there are only two elements: when n is symmetric in binary, and when ←−n = n∗.

Stern also noted every third term in the array was even, and in terms of the function, this means s(3n)

is always even.
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1.4 Introduction to w(n)

Looking at s(3n), which is always even, we can ask many questions. In this dissertation, we study the related

sequence defined by

w(n) :=
1

2
s(3n).

How does this sequence behave? It has some similarities to the Stern sequence, such as symmetry of terms

in a row in the diatomic array, the same average order of magnitude, and that the sum over powers of 2 is

a power of 3. However, w(n) has a much more complicated structure; it has no simple generating function

and the recursive definition is not as short. We now show the sequence w(n) can be defined independently

of s(n).

Theorem 1.4.1. Let w(0) = 0, w(1) = 1 and w(3) = 2. For n ≥ 1, we have

w(2n) = w(n),

w(8n± 1) = w(4n± 1) + 2w(n), (1.6)

w(8n± 3) = w(4n± 1) + w(2n± 1)− w(n). (1.7)

Table 1.3 gives a comparison of the first 64 values of s(n) and w(n). Similar to the Stern sequence, we

Table 1.3: Values for s(n) and w(n)

n s(n) w(n) n s(n) w(n) n s(n) w(n) n s(n) w(n)
1 1 1 17 5 6 33 6 8 49 9 13
2 1 1 18 4 4 34 5 6 50 7 9
3 2 2 19 7 5 35 9 9 51 12 12
4 1 1 20 3 2 36 4 4 52 5 5
5 3 2 21 8 3 37 11 7 53 13 8
6 2 2 22 5 3 38 7 5 54 8 7
7 3 4 23 7 7 39 10 9 55 11 15
8 1 1 24 2 2 40 3 2 56 3 4
9 4 4 25 7 9 41 11 7 57 10 17
10 3 2 26 5 5 42 8 3 58 7 9
11 5 3 27 8 7 43 13 4 59 11 11
12 2 2 28 3 4 44 5 3 60 4 6
13 5 5 29 7 9 45 12 8 61 9 13
14 3 4 30 4 6 46 7 7 62 5 8
15 4 6 31 5 8 47 9 11 63 6 10
16 1 1 32 1 1 48 2 2 64 1 1

can arrange w(n) into a triangular array, where the k-th row is given by w(n) with 2k/3 < n < 2k+1/3, and
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the convention of when k = 0, n = 0. The entries in this triangular array are one half the even elements

from the diatomic array of the Stern sequence. What properties does this sequence have? How often is w(n)

0
1
1

2 1 2
2 4 1 4 2

3 2 5 4 6 1 6 4 5 2 3
3 7 2 9 5 7 4 9 6 8 1 8 6 9 4 7 5 9 2 7 3

Table 1.4: Triangular Array for w(n)

even? What is the largest value in a row? What type of recurrence relations does this sequence have? Does

it have a nice expression for its generating function?

Looking at Table 1.3, we see many similarities to the Stern sequence. We notice the first five values are

the same, and that at powers of 2, the sequence is 1. The Stern sequence has lots of beautiful recurrence

relations, and while w(n) is a little more complicated, it has some similar structure. As just mentioned, we

have

w(2kn) =
1

2
s(3 · 2kn) =

1

2
s(3n) = w(n).

However, the behavior among the odd integers is much harder to discern, and leads us to examine arithmetic

progressions of higher powers of 2. We consider these and not other arithmetic progressions, since the

behavior of s(n) is better understood when working in terms of powers of 2. For example, we have w(2n+1) =

1
2s(3n+ 1) + 1

2s(3n+ 2), which is not very enlightening. Moving to arithmetic progressions modulo 4, we see

w(4n+ 1) =
1

2
s(3n) + s(3n+ 1) = w(n) + s(3n+ 1), (1.8)

w(4n+ 3) =
1

2
s(3n+ 3) + s(3n+ 2) = w(n+ 1) + s(3n+ 2), (1.9)

which is better, but still not completely in terms of w(n). Using a more compact notation, we write (1.8)

and (1.9) as

w(4n± 1) = w(n) + s(3n± 1). (1.10)

In better hopes of finding a recurrence relation for w(n), we move to arithmetic progressions modulo 8. Using

the definition and recurrence relations for s(n), and rearranging the relations in (1.8) and (1.9) to substitute

in for s(3n + 1) and s(3n + 2), we obtain the recurrence relations in (1.6) and (1.7), which completes the

proof of Theorem 1.4.1. We will continue our discussion of properties of w(n) starting in Chapter 5, but
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more specifically, we will return to recurrence relations in Chapter 7.
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Chapter 2

Maximum Values for the Stern
Sequence

The maximum value of w(n) in a row depends on the three largest values of the Stern sequence. We first

consider the three largest values taken by s(n), and then in Chapter 6 we consider the maximum value for

w(n). However, it is surprising that at least the second largest value has not been previously been considered

in the literature.

2.1 Largest Value for s(n)

We define the following notation.

Definition 2.1.1. Let Lm(r) denote the m-th largest distinct value in the r-th row of the Stern sequence.

The maximum of the r-th row is denoted by L1(r), the second largest value is denoted by L2(r), and so

forth.

In Table 2.1, we list the maximum of the first 12 rows of the Stern sequence. Lucas [26] observed the

Table 2.1: Largest Values of s(n) in rows

row r n L1(r)
0 1 1
1 3 2
2 5,7 3
3 11, 13 5
4 21, 27 8
5 43, 53 13
6 85, 107 21
7 171, 213 34
8 341, 427 55
9 683, 853 89
10 1365, 1707 144
11 2731, 3413 233

maximum of each row of the Stern sequence, when written in the diatomic array, is a Fibonacci number.

We restate this theorem, originally proven by Lucas [26] and then later by Lehmer [24] as well.
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Theorem 2.1.2. For all r ≥ 0, we have L1(r) = Fr+2. Moreover, this maximum occurs for the values

nr = (4 · 2r − (−1)r)/3, as well as nr
∗ = (5 · 2r + (−1)r)/3 by symmetry.

This theorem is proved by an easy induction, which we omit. It is also important to note the relationship

between the position of the maximum of the r-th row and that of the (r − 1)-th row. We have

nr = 2nr−1 − (−1)r, (2.1)

which means the maximum for the r-th row will alternate between appearing on the left or right side of

the previous maximum in the diatomic array. It is also important to note that n∗r = 2n∗r−1 + (−1)r, by the

mirror symmetry of the second half of the row.

Remark 1. There are only two values of n that give the maximum for s(n). For even rows, we have n =←−n

and n∗ =
←−
n∗. For odd rows, we have ←−n = n∗ and n =

←−
n∗.

2.2 Second Largest Value for s(n)

Using Mathematica, we can easily compute the second largest value in a particular row of the Stern sequence.

The second largest values are given in Table 2.2, and they follow a Fibonacci recurrence relation,

L2(r) = L2(r − 1) + L2(r − 2), for r ≥ 6. However, starting in the 4th row, there are 4 occurrences of the

Table 2.2: Second Largest Values of s(n) in rows

row r n L2(r)
1 2, 4 1
2 6 2
3 9, 15 4
4 19, 23, 25, 29 7
5 45, 51 12
6 83, 91, 101, 109 19
7 173, 181, 203, 211 31
8 339, 363, 405, 429 50
9 685, 725, 811, 851 81
10 1363, 1451, 1621, 1709 131
11 2733, 2901, 3243, 3411 212
12 5459, 5803, 6485, 6829 343

second largest value. Two of them can be seen as adding the second largest values from the two preceding

rows, L2(r − 1) + L2(r − 2), while the other two can be seen as a linear combination of previous maximum

values, 2L1(r − 2) + L1(r − 4).
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Example 1. First consider the eighth row. By computing values and using Table 2.2, we see

s(363) = s(181) + s(182) = s(181) + s(91) = 31 + 19 = L2(7) + L2(6) = 50 = L2(8).

Then using Table 2.1, we find

s(339) = 2s(85) + s(84) = 2s(85) + s(21) = 2 · 21 + 8 = 2L1(6) + L1(4) = 50 = L2(8).

The second way of obtaining the second largest value, from 2L1(r− 2) +L1(r− 4), will occur either 2 to

the left or right of where L1(r) occurs in the row. The Stern sequence achieves these second largest values

for explicitly describable n.

Definition 2.2.1. For r ≥ 4, let

n2,1(r) :=
17 · 2r−2 − (−1)r−1

3
and n2,2(r) :=

16 · 2r−2 − 7(−1)r

3
.

By the symmetry defined earlier, we have

n2,1(r)∗ =
19 · 2r−2 + (−1)r−1

3
and n2,2(r)∗ =

20 · 2r−2 + 7(−1)r

3
.

The order of these n is

n2,2(r) < n2,1(r) < n2,1(r)∗ < n2,2(r)∗, for r ≥ 6.

Note that n2,1(r) and n2,2(r) coalesce at r = 5 so that there are only two occurrences of L2(5).

We observe that s(n2,1(r)) and s(n2,1(r)∗) give the second largest value in the r-th row as a sum of

preceding second largest values, and s(n2,2(r)) and s(n2,2(r)∗) give the second largest value of the r-th row

as a linear combination of previous maximum values. Also note that n2,1(r) has a similar recurrence relation

as nr in (2.1):

n2,1(r) =
17 · 2r−2 − (−1)r−1

3
=

17 · 2r−2 + 2(−1)r−1 − 3(−1)r−1

3
= 2n2,1(r − 1) + (−1)r. (2.2)

It is also useful to note

n2,2(r) =
16 · 2r−2 − 7(−1)r

3
= 4 · 2r − (−1)r

3
− (−1)r = 4nr−2 − (−1)r. (2.3)

= nr − 2(−1)r.
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The last equality makes it explicit that the second way of obtaining the second largest value, from

2L1(r − 2) + L1(r − 4), will occur either two to the left or right of where L1(r) occurs in the row.

Theorem 2.2.2. We have the following.

(i) L2(r) = Fr+2 − Fr−3 = L1(r)− Fr−3, for r ≥ 4.

(ii) s(n2,1(r)) = s(n2,1(r)
∗
) = s(n2,2(r)) = s(n2,2(r)∗) = L2(r), for r ≥ 4.

(iii) For n2,1(r) and n2,1(r)∗, L2(r) arises from the sum L2(r − 1) + L2(r − 2), for r ≥ 6.

(iv) For n2,2(r) and n2,2(r)∗, L2(r) arises from the sum 2L1(r − 2) + L1(r − 4), for r ≥ 8.

Proof. The induction base is clear and easily verified. Assume (i)-(iv) hold for all rows before and including

the r-th row, with r ≥ 8.

We first show that besides the maximum value, there is nothing larger than L2(r) + L2(r − 1) in the

(r + 1)-th row. If 2k ∈ [2r+1, 2r+2], then using the induction hypothesis from part (i), we find that for all

the even values in the (r + 1)-th row

s(2k) = s(k) ≤ L1(r) = Fr+2 < Fr+2 + 2Fr−1 = Fr+3 − Fr−2 = L2(r) + L2(r − 1).

We now want to obtain a bound on the odd values in the (r + 1)-th row, and more specifically s(4k ± 1).

Now let k ∈ [2r−1, 2r] such that 4k ± 1 ∈ (2r+1, 2r+2). We examine some special cases first. If k = nr−1, or

k = n∗r−1, we see

s(2nr−1 − (−1)r) = s(nr) = L1(r) = s(n∗r) = s(2n∗r−1 + (−1)r),

which implies s(2nr−1+(−1)r) < L1(r) and s(2n∗r−1−(−1)r) < L1(r). Similarly, if k = 2nr−2 or k = 2n∗r−2,

we have

s(2 · 2nr−2 + (−1)r) = s(nr) = L1(r) = s(n∗r) = s(2 · 2n∗r−2 − (−1)r),

which means s(2 · 2nr−2 − (−1)r) < L1(r) and s(2 · 2n∗r−2 + (−1)r) < L1(r). So except for the special cases

where k = nr−1, n∗r−1, 2nr−2, or 2n∗r−2, we have s(2k ± 1) < L1(r), and therefore s(2k ± 1) ≤ L2(r). Then

we have

s(4k ± 1) = s(2k) + s(2k ± 1) = s(2k ± 1) + s(k) ≤ L2(r) + L2(r − 1),

We now examine the special cases more closely. If k = nr−1, we have

s(4nr−1 − (−1)r) = s(2nr−1) + s(2nr−1 − (−1)r) = s(nr−1) + s(nr) = L1(r + 1),
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but we can disregard this (largest) value, since we are looking for the second largest value. Now, we also

have

s(4nr−1 + (−1)r) = s(2nr−1) + s(2nr−1 + (−1)r)

= s(nr−1) + s(nr−1) + s(nr−1 + (−1)r)

= 2s(nr−1) + s(2nr−2 + 2(−1)r)

= 2s(nr−1) + s(nr−2 + (−1)r)

= 2s(nr−1) + s(2nr−3 +−(−1)r + (−1)r)

= 2s(nr−1) + s(nr−3)

= 2L1(r − 1) + L1(r − 3). (2.4)

Note that by symmetry we have s(4n∗r−1 − (−1)r) = 2L1(r − 1) + L1(r − 3) and s(4n∗r−1 + (−1)r) = L1(r).

Lastly, if k = 2nr−2 we have

s(4 · 2nr−2 ± 1) = 2s(nr−2) + s(2nr−2 ± 1)

=


2s(nr−2) + s(2nr−2 + (−1)r)

2s(nr−2) + s(2nr−2 − (−1)r)

=


2s(nr−2 + s(nr−1) = 2L1(r − 2) + L1(r − 1)

3s(n− r − 2) + s(nr−4) = 3L1(r − 2) + L1(r − 4)

< 2L1(r − 1) + L1(r − 3).

So then we only need compare 2L1(r − 1) + L1(r − 3) to L2(r) + L2(r − 1). However, using part (i) from

the induction hypothesis, we have

L2(r) + L2(r − 1) = Fr+2 − Fr−3 + Fr+1 − Fr−4

= Fr+3 − Fr−2 = L1(r + 1)− L1(r − 4)

= 2L1(r − 1) + L1(r − 3).

Thus, all elements in the (r + 1)-th row, besides the maximum, are less than or equal to L2(r) + L2(r − 1),
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and so we have

L2(r + 1) = Fr+3 − Fr−2 = L2(r) + L2(r − 1) = 2L1(r − 1) + L1(r − 3).

All that is left then is to verify that the second largest values occur for the n given earlier. Evaluating

s(n2,1(r + 1)) and using (2.2), we have

s(n2,1(r + 1)) = s(2n2,1(r) + (−1)r+1) = s(n2,1(r)) + s(n2,1(r)− (−1)r) = s(n2,1(r)) + s(2n2,1(r − 1))

= s(n2,1(r)) + s(n2,1(r − 1))

= L2(r) + L2(r − 1).

We also note that by (2.3) we have n2,2(r + 1) = 4nr−1 + (−1)r, and in (2.4) we see that s(4nr−1 + (−1)r)

also gives L2(r). Therefore, the second largest values occur where we expect. Finally, by the symmetry of

the Stern sequence in rows, we have

s(n2,1(r + 1)∗) = s(n2,1(r + 1)) = L2(r + 1) = s(n2,2(r + 1)) = s(n2,2(r + 1)∗).

Table 2.3: Binary representation for n2,1(r), n2,1(r)∗, n2,2(r), and n2,2(r)∗

row r n2,2(r) n2,1(r) n2,1(r)∗ n2,2(r)∗

4 10011 10111 11001 11101
5 101101 101101 110011 110011
6 1010011 1011011 1100101 1101101
7 10101101 10110101 11001011 11010011
8 101010011 101101011 110010101 110101101
9 1010101101 1011010101 1100101011 1101010011
10 10101010011 10110101011 11001010101 11010101101
11 101010101101 101101010101 110010101011 110101010011
12 1010101010011 1011010101011 1100101010101 1101010101101
13 10101010101101 10110101010101 11001010101011 11010101010011

Remark 2. Table 2.3 gives the binary representation of the n which give L2(r), and we see several striking

patterns. We see that
←−−−−
n2,1(r) = n2,2(r)∗ and

←−−−−
n2,2(r) = n∗2,1 for even r ≥ 6. For odd r ≥ 7, we have

←−−−−
n2,1(r) = n2,2(r) and

←−−
n∗2,1 = n∗2,2. Also note that for r = 5, the values n2,1(5) and n2,2(5) coalesce, and all

of the values are symmetric, so that n2,1(5) = n2,2(5) =
←−−−−
n2,1(5) =

←−−−−
n2,2(5).
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2.3 Third Largest Value for s(n)

The third largest values in a row for s(n), given in Table 2.4, also satisfy a Fibonacci recurrence. This

recurrence starts in the 10th row, and rows 8 and 9 give the two initial values. Similar to the second largest

Table 2.4: Third Largest Values of s(n) in rows

row r n L3(r)
1 N/A N/A
2 4 1
3 10, 14 3
4 17, 22, 26, 31 5
5 37, 41, 55, 59 11
6 75, 87, 105, 117 18
7 165, 219 30
8 331, 347, 421, 437 49
9 693, 843 80
10 1355, 1387, 1685, 1717 129
11 2741, 2773, 3371, 3403 209
12 5451, 5547, 6741, 6837 338

value in a row, there are 4 occurrences of the third largest value. By symmetry, two of them come from

L3(r−1)+L3(r−2), and the other two come from the sum of (2L1(r−4)+L1(r−6))+(3L1(r−4)+2L1(r−6)),

which adds to 5L1(r − 4) + 3L1(r − 6).

The values of n where the third largest values occur also follow a pattern, starting in the eighth row.

For the outside left and right values, it appears that the next value is two times the previous value plus or

minus 31. The inside right and left values follow the pattern, two times the previous value plus or minus

one. Taking this recurrences and reiterating them, we obtain the following apparent closed form for these

values.

Definition 2.3.1. For r ≥ 8, let

n3,1(r) :=
64 · 2r−4 − 31(−1)r

3
and n3,2(r) :=

65 · 2r−4 + (−1)r

3
.

We note

n3,1(r)∗ =
80 · 2r−4 + 31(−1)r

3
and n3,2(r)∗ =

79 · 2r−4 − (−1)r

3
.

We will show that n3,1(r), n3,1(r)∗, n3,2(r), and n3,2(r)∗ give the third largest values for s(n) in the r-th

row. It is useful to note

n3,1(r) =
4 · 2r − (−1)r − 30(−1)r

3
= nr − 10(−1)r. (2.5)
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This tells us that the first (and by symmetry, the last) occurrence of the third largest value in the row will

be either 10 to the left or 10 to the right, depending on the parity of the row, of where the largest values

occur. It is also helpful to remark that n3,2(r) satisfies the recurrence relations

n3,2(r) = 2n3,2(r − 1) + (−1)r and n3,2(r)− (−1)r = 2n3,2(r − 1). (2.6)

We also have

n3,1(r) < n3,2 < n3,2(r)∗ < n3,1(r)∗, for r ≥ 8.

Theorem 2.3.2. We have the following:

(i) L3(r) = L2(r)− Fr−7 = Fr+1 + 5Fr−4 = L1(r)− 3Fr−5, for r ≥ 8.

(ii) s(n3,1(r)) = s(n3,1(r)
∗
) = s(n3,2(r)) = s(n3,2(r)∗) = L3(r), for r ≥ 8.

(iii) For n3,1(r) and n3,1(r)∗, L3(r) arises from the sum 5L1(r − 4) + 3L1(r − 6), for r ≥ 8.

(iv) For n3,2(r) and n3,2(r)∗, L3(r) arises from the sum L3(r − 1) + L3(r − 2), for r ≥ 10.

Proof. We proceed by induction. The base case is easily verified. Assume the induction hypotheses hold for

all values below r > 10. We will first verify that L3(r) +L3(r− 1) and 5L1(r− 3) + 3L1(r− 5) are achieved

at the expected values. We will then show that all values in the (r + 1)-th row, except for L1(r + 1) and

L2(r + 1), are less than or equal to L3(r) + L3(r − 1) = Fr+2 + 5Fr−3.

We first verify that s(n3,2(r + 1)) = L3(r) + L3(r − 1). Using (2.6), we have

s(n3,2(r + 1)) = s(2n3,2(r)− (−1)r) = s(n3,2(r)) + s(n3,2(r)− (−1)r)

= L3(r) + s(2n3,2(r − 1))

= L3(r) + L3(r − 1).
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Now considering s(n3,1(r + 1)), and using (2.5) and (2.1) we have

s(n3,1(r + 1)) = s(nr+1 + 10(−1)r) = s(2nr + (−1)r + 10(−1)r)

= s(nr + 5(−1)r) + s(nr + 5(−1)r + (−1)r)

= s(2nr−1 − (−1)r + 5(−1)r) + s(2nr−1 + 6(−1)r − (−1)r)

= s(nr−1 + 2(−1)r) + s(nr−1 + 3(−1)r) + s(nr−1 + 3(−1)r − (−1)r)

= 2s(nr−1 + 2(−1)r) + s(nr−1 + 3(−1)r)

= 2s(2nr−2 + (−1)r + 2(−1)r) + s(2nr−2 + (−1)r + 3(−1)r)

= 2s(nr−2 + (−1)r) + 2s(nr−2 + 2(−1)r) + s(nr−2 + 2(−1)r)

= 2s(nr−3) + 3s(2nr−3 + (−1)r)

= 2s(nr−3) + 3s(nr−3) + 3s(nr−3 + (−1)r)

= 5s(nr−3) + 3s(2nr−4 + 2(−1)r)

= 5s(nr−3) + 3s(nr−4 + (−1)r)

= 5s(nr−3) + 3s(2nr−5)

= 5L1(r − 3) + 3L1(r − 5).

We also note by hypotheses (i), we have

L3(r) + L3(r − 1) = Fr+3 − 3Fr−4 = 5Fr−1 + 3Fr−3 = 5L1(r − 3) + 3L1(r − 5). (2.7)

We now show that all values in the (r + 1)-th row, except for L1(r + 1) and L2(r + 1), are less than or

equal to L3(r) + L3(r − 1) = Fr+2 + 5Fr−3. First note that for 2k ∈ [2r+1, 2r+2], we have

s(2k) = s(k) ≤ L1(r) = Fr+2 < Fr+2 + 5Fr−3 = L3(r) + L3(r − 1).

For the odd values in the (r+1)-th row, we eliminate the cases that anything larger than L3(r)+L3(r−1) can

come from the first, second or third largest values and a neighbor. Now consider s(2k+ 1) = s(k) + s(k+ 1),

and let b represent the larger of s(k) and s(k+ 1), which comes from the r-th row, and c denote the smaller

value coming from the (r − 1)-th row.

If b is L1(r), then c is either L1(r − 1) or L1(r − 2). However, L1(r) + L1(r − 1) gives the largest value
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in the (r + 1)-th row, so we can ignore this value. We have

L1(r) + L1(r − 2) = Fr+2 + Fr < Fr+2 + 5Fr−3

is too small. So then it must be the case that b ≤ L2(r). Now, there are 2 distinct ways of obtaining L2(r).

If b = L2(r), then c could be L2(r−1) or L2(r−2). But L2(r) +L2(r−1) gives L2(r+ 1) and we can ignore

this value. We also have

L2(r) +L2(r− 2) = Fr+2 − Fr−3 + Fr − Fr−4 = Fr+2 + Fr−2 + 2Fr−4 < Fr+2 + 5Fr−3 = L3(r) +L3(r− 1),

so this value is too small. But if b = 2L1(r − 2) + L1(r − 4), then c is L1(r − 2) or L1(r − 2) + L1(r − 4),

and we only need to consider the latter. We see

2L1(r − 2) + L1(r − 4) + L1(r − 2) + L1(r − 4) = 3Fr + 2Fr−2 < Fr+2 + 5Fr−3 = L3(r) + L3(r − 1),

which implies b ≤ L3(r). If b = L3(r), there are 2 distinct ways of obtaining L3(r). If b = L3(r), then c

could be L3(r − 1) or L3(r − 2), but we can disregard these because we want to find something larger. If

b = 5L1(r − 4) + 3L1(r − 6), then c could be 2L1(r − 4) + L1(r − 6) or 3L1(r − 4) + 2L1(r − 6). We need

only consider the latter, and we see

5L1(r − 4) + 3L1(r − 6) + 3L1(r − 4) + 2L1(r − 6) = 8Fr−2 + 5Fr−4 < Fr+2 + 5Fr−3 = L3(r) + L3(r − 1),

which implies b < L3(r). However c might be a large value in the (r − 1)-the row and make up for b being

so small. Now, we know c < b < L3(r), that c comes from the (r − 1)-th row, and that c > L3(r − 1). If

c = L1(r− 1), then b could only be L1(r− 2) +L1(r− 3) (since we already eliminated b = L1(r)). But then

b+ c = 2L1(r− 1) +L1(r− 3) = L2(r+ 1), and we can also ignore this value. So then c must be L2(r− 1).

Then the only possibility for b is L2(r − 1) + L2(r − 3) (as we already eliminated b = L2(r)). By Theorem

2.2.2 (i) and the induction hypothesis (i), we have

L2(r + 1)− Fr−6 = L2(r) + L2(r − 1)− Fr−6

= L3(r) + Fr−7 + L3(r − 1) + Fr−8 − Fr−6

= L3(r) + L3(r − 1). (2.8)
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So then using (2.8) we see

b+ c = 2L2(r − 1) + L2(r − 3)

= 2L1(r − 1)− 2Fr−4 + L1(r − 3)− Fr−6

= L2(r + 1)− 2Fr−4 − Fr−6

< L2(r + 2)− Fr−6 = L3(r) + L3(r − 1).

Finally, we have that c could be L2(r − 1) = 2L1(r − 3) + L1(r − 5) and b could be 3L1(r − 3) + 2L1(r − 5)

or 3L1(r − 3) + L1(r − 5). Then by (2.7) we see

L3(r) + L3(r − 1) = 5L1(r − 3) + 3L1(r − 5) > 5L1(r − 3) + 2L1(r − 5),

so that 5L1(r − 3) + 2L1(r − 5) is too small, while 5L1(r − 3) + 3L1(r − 5) gives L3(r) + L3(r − 1). Then

this eliminates all possibilities and shows nothing can be between L3(r) + L3(r − 1) and L2(r + 1), so that

s(2k + 1) ≤ L3(r) + L3(r − 1). Thus we have L3(r + 1) = L3(r) + L3(r − 1).

We now search for a relationship between n, n∗, and ←−n for n3,1 and n3,2. Looking at the binary

representations as given in Table 2.5, we see that n3,1(9) is symmetric in its binary representation. For this

row, there are only 2 distinct elements, namely, n3,1 and n∗3,1. Otherwise, the relationships between n3,1,

n3,2, n∗3,1, and n∗3,2 follow the same patterns as those for the n that give the second largest value. For even

rows, we have ←−−n3,1 = n∗3,2 and ←−−n3,2 = n∗3,1. For odd rows, we have ←−−n3,1 = n3,2 and
←−−
n∗3,1 = n∗3,2.

Table 2.5: Binary representation for n3,1(r), n3,1(r)∗, n3,2(r), and n3,2(r)∗

row r n3,1(r) n3,2(r) n3,2(r)∗ n3,1(r)∗

8 101001011 101011011 110100101 110110101
9 1010110101 1010110101 1101001011 1101001011
10 10101001011 10101101011 11010010101 11010110101
11 101010110101 101011010101 110100101011 110101001011
12 1010101001011 1010110101011 1101001010101 1101010110101
13 10101010110101 10101101010101 11010010101011 11010101001011
14 101010101001011 101011010101011 110100101010101 110101010110101
15 1010101010110101 1010110101010101 1101001010101011 1101010101001011
16 10101010101001011 10101101010101011 11010010101010101 11010101010110101

Remark 3. Again, note that there are only two occurrences of L1 in a row, whereas for L2 and L3, we have

the group of four elements as mentioned in Chapter 1.

Since the next row in the diatomic array is formed by inserting the sum of two consecutive terms in
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between them, it makes sense that the k-th largest value in the r-th row will satisfy a Fibonacci recurrence.

This appears to hold true for the 4th, 5th, and 6th (distinct) largest value in a row, for a sufficiently large

row value. We see in Table 2.6 a Fibonacci recurrence starts at the 14th row for L4, the 18th for L5, and

Table 2.6: Lm of s(n) in rows

row r L1(r) L2(r) L3(r) L4(r) L5(r) L6(r)
3 5 4 3 2 1 N/A
4 8 7 5 4 3 2
5 13 12 11 10 9 8
6 21 19 18 17 16 15
7 34 31 30 29 27 26
8 55 50 49 47 46 45
9 89 81 80 79 76 75
10 144 131 129 128 123 121
11 233 212 209 208 207 199
12 377 343 338 337 335 322
13 610 555 547 546 545 542
14 987 898 885 883 882 877
15 1597 1453 1432 1429 1428 1427
16 2584 2351 2317 2312 2311 2309
17 4181 3804 3749 3741 3740 3739
18 6765 6155 6066 6053 6051 6050
19 10946 9959 9815 9794 9791 9790
20 17711 16114 15881 15847 15842 15841
21 28657 26073 25696 25641 25633 25632
22 46368 42187 41577 41488 41475 41473
23 75025 68260 67273 67129 67108 67105

the 22nd row for L6. This leads us to the following conjecture.

Conjecture 2.3.3. For all r ≥ 4m − 2, the m-th largest distinct value satisfies the recurrence Lm(r) =

Lm(r − 1) + Lm(r − 2).

Remark 4. By Theorems 2.2.2 (i) and 2.3.2 (i), we have L2(r) = Fr+2 − Fr−3 and L3(r) = L2(r) − Fr−7.

Note that L3(r) = Fr+2 − Fr−3 − Fr−7. Inspecting Table 2.6, we notice the following:

L4(r) =L3(r)− Fr−11 = Fr+2 − Fr−3 − Fr−7 − Fr−11 for r ≥ 12,

L5(r) =L4(r)− Fr−15 = Fr+2 − Fr−3 − Fr−7 − Fr−11 − Fr−15 for r ≥ 16, and

L6(r) =L5(r)− Fr−19 = Fr+2 − Fr−3 − Fr−7 − Fr−11 − Fr−15 − Fr−19 for r ≥ 20.

This leads us to another conjecture.
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Conjecture 2.3.4. For r ≥ 4(m− 1), we have

Lm(r) = Lm−1(r)− Fr−(4m−5) = Fr+2 −
m∑
j=2

Fr−(4j−5).

Finally, we examine the limits of the ratios of the first three largest values for s(n) and L1. We have

lim
r→∞

L1(r)

L1(r)
= 1,

lim
r→∞

L2(r)

L1(r)
= lim
r→∞

(
1− Fr−3

Fr+2

)
= 1− 1

φ5
≈ 0.90983,

lim
r→∞

L3(r)

L1(r)
= lim
r→∞

(
1− 3Fr−5

Fr+2

)
= 1− 3

φ7
≈ 0.896674.

If Conjecture 2.3.4 is correct, then we have

lim
k→∞

(
lim
r→∞

Lk(r)

L1(r)

)
= 1−

∞∑
j=1

1

φ4j+1
= 1−

(
1− 2

√
5

5

)
=

2
√

5

5
≈ 0.8944.

This means the k-th largest values stay around 0.8944Fr+2. More importantly, this also tells us the number

of n with 2r < n < 2r+1, such that

s(n) >
2
√

5

5
Fr+2

goes to infinity as r goes to infinity. While the number of n grows without bound, it is still small compared

to the number of total elements in a row.
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Chapter 3

First Appearance of Values in a Row

In his 1858 paper, Stern [34] considered several questions regarding when a number first appears in a row

or how often it occurs. These results are also summarized in Lehmer’s paper [24]. In the context of the

diatomic array, a “new” entry is an entry which comes from the sum of two entries from the previous row.

These new entries correspond to s(n) for odd n. Stern also considered how many times a number m will

appear in a row, and in which line m will last appear as a new entry.

First, we have m will not appear past the m-th row as a new entry. The last time m will appear as a new

entry will be in the (m − 1)-th row. Since m comes from the sum of two consecutive and relatively prime

entries from the previous row, this means there are φ(m) different ways to obtain m as a new entry. So

each m will appear at most φ(m) times in a row, and for every row after the (m− 1)-th row, m will appear

exactly φ(m) times. For primes, this means p will occur p − 1 times in the (p − 1)-th row, and we can say

something a little stronger too.

Theorem 3.0.5. The number p is a prime if and only if it appears p− 1 times in the (p− 1)th row.

This theorem, proved by Stern, is also mentioned in Dickson’s History [10] as a test for primality.

In thinking about how soon a number will appear, the Fibonacci numbers appear earliest compared to

other numbers of the same size, since they are generally the largest value in a row. This gives us a lower

bound for the row in which the number m will appear.

Theorem 3.0.6. The number m will appear no earlier than in the row given by
[
ln(
√
5m)

ln(φ) − 2
]
, where

φ = 1+
√
5

2 is the golden ratio.

Proof. In the r-th row, the largest number is Fr+2. Using Binet’s formula, we have

Fr =
φr − φr√

5
.

in solving for r, we have

lnFr = r lnφ+ ln

(
1−

(
φ

φ

)r)
− ln

√
5,
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so that

r =
ln(Fr

√
5)

lnφ
− 1

lnφ
ln

(
1−

(
φ

φ

)r)

=
ln(Fr

√
5)

lnφ
− 1

lnφ
+ o(1). (3.1)

If we define v(m) to be a function which gives the row where m first appears, then we have v(Fr) = r − 2.

Together with (3.1), this means v(Fr) = r − 2 ≈ ln(Fr
√
5)

lnφ − 2. Then we can expect v(m) to be bounded

below by
[
ln(
√
5m)

ln(φ)

]
− 2.

Figure 3.1 compares v(m) with the lower bound ln(
√
5m)

ln(φ) − 2 for the first 100 values and then also for the

first 212 values. Let

Figure 3.1: v(m) compared to ln(
√
5m)

ln(φ) − 2

f(x) :=

[
ln(
√

5x)

ln(φ)

]
− 2.

Figure 3.2 graphs the difference v(m) − f(m) for m up to 212. This shows us that f(x) works as a lower

bound, and this had been verified up to 220 − 1. It appears that a possible upper bound would be the lower

bound shifted up by 3, or f(x) + 3. Some of the values where the difference is 3 are 1230, 3160, 4470, 5052,

5082, 5190, 5208, 5262, 5280, 5304, 7764, 8022, 8070, 8088, and 8176. Computing up to m = 220 − 1, we

found the only values that occur in the difference are 0, 1, 2, and 3. There are many values of m which have

a distance of 3 from the lower bound, but this seems to be the maximum. This leads us to the following

conjecture.

Conjecture 3.0.7. For all m, we have f(m) ≤ v(m) ≤ f(m) + 3.

Stern also discovered a way of finding the rows in which a value m could be found. He noted that if a

and b are consecutive terms, then the pair (a, b) can occur only once in the diatomic array. By symmetry,

23



Figure 3.2: v(m)− f(m) for m up to 212

the sequence (b, a) will appear in the second half of the row. In addition, (a, b) will appear in the line

whose number is one less than the sum of the continuants in the regular continued fraction expansion of

a/b. In other words, if the continued fraction of a/b = [a1, a2, a3, . . . , an], then (a, b) will appear in the

(a1 + a2 + a3 + · · ·+ an − 1)-th row.

We can also rephrase this problem another way. If m is a new entry, then there exist relatively prime a

and b such that a+ b = m. This means m will then appear in the row given by the sum of the continuants

from the continued fraction of a/b. In finding all such possible a and b and computing the sum of the

continuants of a/b, we can find all the rows in which m will appear. With this approach, Conjecture 3.0.7

can be interpreted as follows:

For fixed m, consider all pairs (a, b) with gcd(a, b) = 1 and a + b = m, with the continued fraction

expansion a/b = [a1, a2, a3, . . . , an]. Then the smallest sum of a1 + a2 + a3 + · · ·+ an is of the magnitude of

f(m). In other words,

min
(a,b)

(a1 + a2 + a3 + · · ·+ an) = f(m) +O(1).

We know roughly in which row a value m will appear and the last row in which it will appear as a new entry.

Future questions to be investigated include what happens in between. In which row will the value m appear

for the second time? Is there a distribution for the rows in which the value m will appear as a new entry?
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Chapter 4

The Distribution of Values

This chapter is based on the author’s publication [23], “Distribution of values of the the binomial coefficients

and the Stern sequence.”

4.1 Background & Motivation

Historically there have been two stages to understanding the distribution of sequences, from a number

theoretical standpoint. The first and more classical stage involves examining the distribution of values in a

sequence. Hermann Weyl [37] made many advances in this area by proving certain sequences are uniformly

distributed. For example, Weyl proved that if α is an irrational number, then for any positive integer d, the

sequence {αnd} is uniformly distributed.

Once the distribution of values for a sequence is well understood, then a more modern approach is to

consider the distribution of spacings between consecutive terms. Some famous results in this area include

work by Hooley [19, 20] and Gallagher [14] on the distribution of gaps between consecutive primes. The

limiting distribution for average gaps between primes is Poisson, and the spacings of fractional parts of

lacunary sequences (see [30]) are also Poisson. Another famous result in this area is the Steinhaus Conjecture,

also known as the Three Gap Theorem. For example, for any irrational α, the gaps between consecutive

terms after ordering the sequence {αn} up to a certain N , will only take 3 values, one of which is the sum

of the other two (see [33, 36]). For a more complete background on the distribution of spacings, see the first

few pages of [2].

The distribution of values is well understood for many sequences, but what about the Stern sequence?

With the goal in mind of studying the distribution of spacing of the Stern sequence, we first need to

understand the distribution of values. Understanding the distribution of values for a row of the Stern

sequence in the diatomic array is not an easy problem. As a means of trying to understand the distribution

of the Stern sequence, we consider a potentially similar sequence, the binomial coefficients. The initial idea

that these two sequences might be comparable in behavior of distribution came from the sum of values in a
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row. For example, the sum of values in the n-th row of the diatomic array is 3n, and the sum of the binomial

coefficients
(
n
k

)
for a fixed n is 2n. With this motivation of understanding distribution of the Stern sequence

better, we investigated the distribution of values of the binomial coefficients.

4.2 The Distribution of Values for the Binomial Coefficients

As a means of understanding the distribution of the values of the binomial coefficients, we compare them to

the average value. First note that the average value of the binomial coefficients is 2n/(n+ 1).

For a fixed n, we define

F (λ, n) :=
#
{

0 ≤ k ≤ n :
(
n
k

)
≥ λ 2n

n+1

}
n+ 1

to be the counting function for the number of binomial coefficients which are larger than λ times the average

value.

Remark 5. A probabilistic interpretation of this would be finding at how many points k, with k = 0, 1, . . . , n,

does the probability mass function fk(n) :=
(
n
k

)
2−n lie above λ/(n + 1). However, we will proceed from a

number theoretic standpoint.

Then for various values of n, we compute F (λ, n) to see if there is a limiting function as n goes to infinity.

Figure 4.1 compares the values of F (λ, 28), F (λ, 29), and F (λ, 210). The curve of F (λ, 28) is given in blue

Figure 4.1: Comparing F (λ, 28), F (λ, 29), and F (λ, 210)

and is on top for λ close to 0. The curve of F (λ, 29) is given in red and is the middle curve. The curve for

F (λ, 210) is given in purple and is on bottom for λ close to 0. The data suggests that a nontrivial limiting
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function does not exist, possibly because the comparing function grows too fast as compared to the binomial

coefficients. It is likely F (λ, n) converges to F (λ) = 0 for λ > 0, with F (0) = 1.

4.3 A Variation for the Binomial Coefficients

We now vary the problem in perhaps an unexpected way. Instead of allowing the variable λ to be a multiplier,

we want the counting function to converge to a limiting function, so we raise the average value to λ instead.

We now define the counting function to be

G(λ, n) :=

#

{
0 ≤ k ≤ n :

(
n
k

)
≥
(

2n

n+1

)λ}
n+ 1

.

We will also denote the limit, whose existence we shall establish later, by

G(λ) := lim
n→∞

G(λ, n).

Computing G(λ, n) for various n, as seen in Figure 4.2, we see that a limiting function does seem to exist.

The sequence of functions seems to converge to G(λ) fairly quickly; the error is roughly 0.0125 for G(λ, 210),

0.00556 for G(λ, 211), and 0.00312 for G(λ, 213). This data then leads us to the following theorem.

Theorem 4.3.1. The limit G(λ) exists, and satisfies the relation

1− (1 +G(λ)) ln(1 +G(λ)) + (1−G(λ)) ln(1−G(λ))

2 ln 2
= λ. (4.1)

While refinements of the asymptotics of the binomial coefficients can be found in [35], basic asymptotics

and Stirling’s Formula are sufficient to prove the result.

Proof. The larger values for the binomial coefficient occur in the middle, at approximately n/2. Our main

term will come from
√
n ≤ k ≤ n −

√
n, but since the binomial coefficients are also symmetric, we will

consider only the second half, or more specifically n
2 ≤ k ≤ n −

√
n, for our initial estimates. For the tails

we only need consider k in the range 0 ≤ k <
√
n, again, because of symmetry.

We first derive estimates for the main term. If we let k = n
2 +m, we have 0 ≤ m ≤ n

2 −
√
n. Then clearly

√
n/2 ≤

√
n/2 +m ≤

√
n−
√
n ≤
√
n,
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G(λ, 24) and G(λ) G(λ, 25) and G(λ)

G(λ, 27) and G(λ) G(λ, 29) and G(λ)

Figure 4.2: G(λ, 24), G(λ, 25), G(λ, 27), G(λ, 29) compared with G(λ)

so that (n/2 +m)−1/2 = O(n−1/2). Similarly we have

4
√
n ≤

√
n/2−m ≤

√
n/2,

so that (n/2−m)−1/2 = O(n−1/4). Also note that (1 +O(n−1/2))(1 +O(n−1/4)) = (1 +O(n−1/4)).

Using Stirling’s Formula three times, we have

(
n

n
2 +m

)
=

n!

(n/2−m)!(n/2 +m)!

=
nn
√
n√

2π(n/2 +m)n/2+m+1/2(n/2−m)n/2−m+1/2

(
1 +O(n−1/4)

)
.
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Now pick m such that
(

n
n/2+m

)
≥ (2n/(n+ 1))λ but

(
n

n/2+m+1

)
< (2n/(n+ 1))λ. Since logarithmic functions

are monotonic, we have

#

{
0 ≤ k ≤ n :

(
n

k

)
≥
(

2n

n+ 1

)λ}
= #

{
0 ≤ k ≤ n : ln

(
n

k

)
≥ ln

(
2n

n+ 1

)λ}
,

so we can consider the inequality ln
(

n
n/2+m

)
≥ ln(2n/(n+ 1))λ and simplify. So we have

λn ln 2− λ ln(n+ 1) ≤ n lnn+
1

2
lnn− 1

2
ln(2π)−

(n
2

+m
)

ln
(n

2
+m

)
−
(n

2
−m

)
ln
(n

2
−m

)
− 1

2
ln
(n

2
+m

)
− 1

2
ln
(n

2
−m

)
+ ln(1 +O(n−1/4))

≤ n lnn+
(n

2
+m

)
ln
(n

2
+m

)
−
(n

2
−m

)
ln
(n

2
−m

)
+O(lnn) +O(n−1/4).

This implies

λn ln 2 +O (lnn) ≤ n lnn+
(n

2
+m

)
ln
(n

2
+m

)
−
(n

2
−m

)
ln
(n

2
−m

)
+O (lnn) +O(n−1/4).

After dividing by n, and rearranging, we have

λ ln 2 ≤ lnn−
(

1

2
+
m

n

)
ln
(n

2
+m

)
−
(

1

2
− m

n

)
ln
(n

2
−m

)
+O

(
lnn

n

)
+O(n−5/4).

The right hand side simplifies to

lnn−
(

1

2
+
m

n

)
ln
(n

2
+m

)
−
(

1

2
− m

n

)
ln
(n

2
−m

)
+O(n−5/4)

= lnn−
(

1

2
+
m

n

)
lnn−

(
1

2
+
m

n

)
ln

(
1

2
+
m

n

)
−
(

1

2
− m

n

)
lnn

−
(

1

2
− m

n

)
ln

(
1

2
− m

n

)
+O(n−5/4)

= −
(

1

2
+
m

n

)
ln

(
1

2
+
m

n

)
−
(

1

2
− m

n

)
ln

(
1

2
− m

n

)
+O(n−5/4).

We then have the inequality

(
1

2
+
m

n

)
ln

(
1

2
+
m

n

)
+

(
1

2
− m

n

)
ln

(
1

2
− m

n

)
+O(n−5/4) ≥ λ ln 2. (4.2)
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Because of our choice of m, (4.2) implies

(
1

2
+
m+ 1

n

)
ln

(
1

2
+
m+ 1

n

)
+

(
1

2
− m+ 1

n

)
ln

(
1

2
− m+ 1

n

)
+O(n−5/4) ≤ −λ ln 2. (4.3)

Simplifying the left side of the inequality (4.3), we have

(
1

2
+
m

n

)
ln

(
1

2
+
m

n

)
+

(
1

2
− m

n

)
ln

(
1

2
− m

n

)
+O

(
1

n

)
≤ −λ ln 2,

and this implies

(
1

2
+
m

n

)
ln

(
1

2
+
m

n

)
+

(
1

2
− m

n

)
ln

(
1

2
− m

n

)
= −λ ln 2 +O

(
1

n

)
. (4.4)

Now, let g(t) := ( 1
2 + t) ln( 1

2 + t) + ( 1
2 − t) ln( 1

2 − t). If t = m
n , then 0 ≤ t ≤ 1

2 − n
−1/2 and

g : [0, 12 − n
−1/2] → R. Otherwise, g is well defined on the interval [0, 12 ], with g(0) = − ln 2 and g( 1

2 ) = 0.

Looking at g′(t) = ln(1
2 + t) − ln( 1

2 − t), we see g′(t) > 0 for t > 0. This means g is a strictly increasing

function on the interval [0, 12 ], and there exists a unique tλ ∈ (0, 12 − n−1/2) such that g(tλ) = −λ ln 2.

So if g(m/n) = −λ ln 2 + O(n−1/2) = g(tλ) + O(n−1/2), then this implies m/n = tλ + O(n−1/2), so that

m = ntλ +Oλ(
√
n).

Now, we have

G(λ, n) =

2#

{
0 ≤ m ≤ n

2 −
√
n :
(

n
n/2+m

)
≥
(

2n

n+1

)λ}
n+ 1

+

2#

{
0 ≤ k ≤

√
n :
(
n
k

)
≥
(

2n

n+1

)λ}
n+ 1

=
2tλn+O(n1/2)

n+ 1
+
O(
√
n)

n+ 1

=
2tλn

n+ 1
+O(n−1/2).

Then taking the limit, we find

lim
n→∞

G(λ, n) = lim
n→∞

2tλn

n+ 1
+O(n−1/2) = 2tλ,

so that the limit G(λ) exists.
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All that is left is to show G(λ) satisfies (4.1). We have

1− 1

2 ln 2
(1 +G(λ)) ln(1 +G(λ)) + (1−G(λ)) ln(1−G(λ))

= 1− (1 + 2tλ) ln(1 + 2tλ) + (1− 2tλ) ln(1− 2tλ)

2 ln 2

= 1−
2( 1

2 + tλ)(ln 2 + ln( 1
2 + tλ)) + 2( 1

2 − tλ)(ln 2 + ln( 1
2 − tλ))

2 ln 2

= 1− 2g(tλ) + 2 ln 2

2 ln 2

= 1− −2λ ln 2 + 2 ln 2

2 ln 2

= 1− (1− λ)

= λ.

Remark 6. There are asymptotic estimates for the binomial coefficients which involve the binary entropy

function (see [15]). This helps to explain why the function g in the proof of Theorem 4.3.1, as well as the

relation which G(λ) satisfies, is reminiscent of the binary entropy function.

4.4 The Distribution of Values for the Stern sequence

There are a variety of ways to view the distribution of values for the Stern sequence. Figure 4.3 shows the

values of the Stern sequence in the 10th and 14th rows of the diatomic array. The values are very symmetric

Figure 4.3: Values for the 10th and 14th rows of s(n)

and fractal-like. Another way to look at the values, is to take a row and order it. In Figure 4.4, we took

the 14th row of the Stern sequence, arranged the values in increasing order, and then normalized the values

by dividing by the largest value F16. We can also consider the frequency of each value. Figure 4.5 shows

the frequency of each value that occurs in the 14th row of the Stern sequence. The graph looks like a filled
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Figure 4.4: Normalized values in the 14th row

Figure 4.5: Frequency of values in 14th row Figure 4.6: Frequency of values up to 14th row

in normal distribution. If we consider the frequency of values cumulatively up to the 14th row, as given in

Figure 4.6, the graph looks like a skewed normal distribution.

We can also analyze the distribution of values by comparing them to the average value. Recall that Stern

[34] showed the sum of the values in a row of the diatomic array is a power of 3, so that

2r+1−1∑
n=2r

s(n) = 3r. (4.5)

This implies the average value of the r-th row is roughly (3/2)r. For fixed N , this implies

1

N

N∑
n=0

s(n) � Nβ−1, (4.6)

where β = log2 3.

For the distribution of values of the Stern sequence, we then count the number of terms in a row of the
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diatomic array which are larger than the average value. We define the counting function

H(λ,N) :=
#
{

2N ≤ n < 2N+1 : s(n) ≥ λ
(

3N

2N

)}
2N

.

The data in Figure 4.7 suggests H(λ,N) converges to a smooth function, but it is not clear if it actually

does. Overall, the general shape of the graphs looks like e−ax
2−bx, but the data does not stay close to the

Figure 4.7: H(λ, 212) (circles), H(λ, 217) (squares), and H(λ, 222) (diamonds)

curve. We hope to understand the nature of this limiting distribution in the future.

As it turns out, the binomial coefficients are not similar enough to gain any information for the Stern

sequence. The next step after this problem will be to understand the distribution of gaps of the Stern

sequence.

4.5 The Distribution of Gaps

There are numerous ways we could consider the gaps of the Stern sequence. First, we can simply compute

s(n + 1) − s(n). Figure 4.8 plots the normalized difference for the 14th row. Figure 4.8 looks like the plot

of s(n) with also a reflection over the x-axis. If n = 2`, we have

s(n+ 1)− s(n) = s(2`+ 1)− s(2`) = s(`+ 1).

If n = 2`+ 1, then we have

s(n+ 1)− s(n) = s(2`+ 2)− s(2`+ 1) = −s(`).
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Figure 4.8: s(n+ 1)− s(n) for the 14th row

From this perspective, the distribution of gaps is the same problem as the distribution of values.

Another way to approach this problem is to order a row from largest to smallest and then take the

difference of consecutive terms. Since values occur at least twice in a row, we would have a lot of zeros. If

we eliminate repeated values when taking the difference, then we have a type of step function. Figures 4.9

Figure 4.9: Length of gaps for the 10th row Figure 4.10: Length of gaps for the 14th row

and 4.10 give the differences of terms for the 10th row and the 14th row, after they have been sorted and

repeated elements deleted.

In Chapter 2, we discussed the largest three values in a row of the diatomic array, and we can use this

information here. First, we normalize the data by dividing by the largest possible value Fr+2. By Theorems

2.2.2 and 2.3.2, we have the biggest gap is Fr−3/Fr+2, and the next gap is Fr−7/Fr+2. If the conjecture

Lk(r)− Lk−1(r) = Fr−(4k−5) is true, then the distribution of gaps is Fr−(4k−5)/Fr+2 for 2 ≤ k ≤ (r + 5)/4,

with the smallest value being 1/Fr+2. The largest gaps are fixed, regardless of the row. The smallest gaps

then approach 0, for the later rows.

This would mean the distribution of the gaps is not uniformly distributed. If Conjecture 2.3.4 is true,

then we have
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Conjecture 4.5.1. The normalized distribution of gaps for the Stern sequence is φ−(4k−3) for 2 ≤ k ≤

(r + 5)/4.
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Chapter 5

Properties of w(n)

5.1 Basic Properties

Recall the definition

w(n) :=
1

2
s(3n),

and that w(n) is also defined independently of s(n) by the recurrences

w(2n) = w(n), w(8n± 1) = w(4n± 1) + 2w(n),

w(8n± 3) = w(4n± 1) + w(2n± 1)− w(n), for n ≥ 1,

with w(0) = 0, w(1) = 1, and w(3) = 2.

These recurrences were proved in Chapter 1. We repeat the table of values given in Chapter 1. Table 5.1

gives a comparison of the first 64 values of s(n) and w(n). Examining Table 5.1, for small n we see that

Table 5.1: Values for s(n) and w(n)

n s(n) w(n) n s(n) w(n) n s(n) w(n) n s(n) w(n)
1 1 1 17 5 6 33 6 8 49 9 13
2 1 1 18 4 4 34 5 6 50 7 9
3 2 2 19 7 5 35 9 9 51 12 12
4 1 1 20 3 2 36 4 4 52 5 5
5 3 2 21 8 3 37 11 7 53 13 8
6 2 2 22 5 3 38 7 5 54 8 7
7 3 4 23 7 7 39 10 9 55 11 15
8 1 1 24 2 2 40 3 2 56 3 4
9 4 4 25 7 9 41 11 7 57 10 17
10 3 2 26 5 5 42 8 3 58 7 9
11 5 3 27 8 7 43 13 4 59 11 11
12 2 2 28 3 4 44 5 3 60 4 6
13 5 5 29 7 9 45 12 8 61 9 13
14 3 4 30 4 6 46 7 7 62 5 8
15 4 6 31 5 8 47 9 11 63 6 10
16 1 1 32 1 1 48 2 2 64 1 1
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w(2n) < w(2n+ 1) and w(2n+ 2) ≤ w(2n+ 1).

Theorem 5.1.1. For all n ≥ 0, we have

w(2n) < w(2n+ 1) and w(2n+ 2) ≤ w(2n+ 1),

with equality when n = 2
3 (4t−1 − 1).

Proof. Note that w(2n) < w(2n+ 1) is equivalent to showing

s(6n+ 3) = s(3n+ 1) + s(3n+ 2) > s(3n). (5.1)

Let 3n+ 1 = 2rm, where m is odd. Then (5.1) becomes

s(2rm− 1) < s(2rm) + s(2rm+ 1).

Using (1.3), we have

s(2rm) + s(2rm+ 1) = s(m) + s(2r − 1)s(m) + s(m+ 1)

and

s(2rm− 1) = s(2r − 1)s(m) + s(m− 1).

Thus, showing (5.1) holds is equivalent to showing s(m− 1) < s(m) + s(m+ 1). Since m is odd, and using

(1.5), we have s(m) > s(m− 1), so that (5.1) holds.

Using the same approach for the other inequality, we have w(2n+2) ≤ w(2n+1) is equivalent to showing

s(3n+ 3) ≤ s(3n+ 1) + s(3n+ 2). Writing 3n+ 2 = 2rm where m is odd, we have

s(2rm + 1) ≤ s(2rm − 1) + s(2rm). Again, using (1.3), s(2rm + 1) reduces to s(2r − 1)s(m) + s(m + 1),

and s(2rm − 1) + s(2rm) reduces to s(2r − 1)s(m) + s(m − 1) + s(m). Then we need to show s(m + 1) ≤

s(m− 1) + s(m). Since m is odd, let m = 2t+ 1, so we have s(m+ 1) = s(t+ 1) ≤ 2s(t) + s(t+ 1), which is

true. Note we have equality if n = 2(4t − 1)/3. Using (1.4), we have

w

(
2 · 2(4t − 1)

3
+ 1

)
= w

(
4t+1 − 1

3

)
=

1

2
s(4t+1 − 1)

=
1

2
s(22t+2 − 1)

=
1

2
(2t+ 2) = t+ 1,
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and

w

(
2 · 2(4t − 1)

3
+ 2

)
= w

(
2(4t − 1)

3
+ 1

)
=

1

2
s(2 · 4t + 1)

=
1

2
s(22t+1 + 1) =

1

2
(2t+ 1 + 1)

= t+ 1.

5.2 Symmetry

The symmetry of the Stern sequence turns out to be very useful, and w(n) also inherits the symmetry as well,

although the symmetry takes a slightly different form. For the diatomic array, the row in which s(n) would

appear is given by blog2(n)c, so that we can expect the row in which w(n) would appear to be blog2(3n))c.

We define the row number of w(n) to be given by

r(n) := blog2(3n))c.

Let r(n) = k and define n′ = 2k − n. Then w(n) satisfies the symmetry given by w(n) = w(n′). To see this,

simply note that 2k < 3n < 2k+1, implying that (3n)∗ = 3 · 2k − 3n. Then we have

2w(n) = s(3n) = s((3n)∗) = s(3 · 2k − 3n) = s(3(2k − n)) = 2w(2k − n) = 2w(n′).

If 2k < 3n < 2k+1, we have 2k < 3 · 2k − 3n < 2k+1, implying n′ also lies in the same row as n, so that

r(n′) = k. It is also worth mentioning the interval of n such that r(n) = k for fixed k, has length roughly

2k/3, with midpoint 2k−1. The row in which n is located is symmetric about 2r(n)−1.

In Chapter 1, we discussed a more subtle type of symmetry for the Stern sequence. If we consider the

binary representation for n, we define ←−n to be the reversal of the binary digits of n. There is a four-fold

symmetry for the Stern sequence:

s(n) = s(n∗) = s(←−n ) = s(
←−
n∗).

We have seen that
←−
n∗ = ←−n ∗. These two symmetries form a nice group with four elements, and these

elements will always have the same Stern value. However, there are two special cases where there are only

two elements: when n is symmetric in binary (so that (n =←−n and n∗ =
←−
n∗), and when ←−n = n∗ and n =

←−
n∗.

Does this more subtle symmetry also carry over for w(n)? Writing n and←−n in its binary expansion with
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εi ∈ {0, 1}, we find

n =

v∑
i=0

εi2
i ≡

v∑
i=0

εi(−1)i (mod 3),

and

←−n =

v∑
i=0

εv−i2
i ≡

v∑
i=0

εv−i(−1)i ≡ (−1)v
v∑
i=0

εv−i(−1)v−i (mod 3).

This means that if 3 divides n, then 3 also divides ←−n , hence w(n/3) = w(←−n /3).

5.3 Combinatorial Interpretation for w(n)

The generating function of s(n) is given by

S(x) := x

∞∏
j=0

(1 + x2
j

+ x2
j+1

).

Carlitz [6] remarked this infinite product corresponds to the number of ways to write an integer using powers

of 2, with each part appearing at most twice. If we define b(n) as the number of ways to write n as

n =

∞∑
i=0

εi2
i with εi ∈ {0, 1, 2}, (5.2)

then s(n+1) = b(n). Reznick [28] connected s(n) to this generating function and combinatorial interpretation

explicitly. Note that the number of parts,
∑
εi, is congruent to the number of times εi = 1, modulo 2.

A combinatorial interpretation for w(n) completely independent of s(n) is not easy. For now we consider

an interpretation for w(n) in terms of the interpretation for s(n).

First note s(3n) counts the number of ways to write 3n−1 using powers of two, with each part appearing

at most twice. Now, s(3n) is always even. If we think of this in terms of partitions, it means there are an even

number of partitions to write 3n− 1 in this way. Then we need to take half of s(3n), since w(n) = 1
2s(3n).

We now show the number of partitions for 3n − 1 with an even number of parts is equal to the number of

partitions with an odd number of parts. This means we can interpret w(n) to be the number of ways to

write 3n − 1 using powers of two with each part appearing at most twice, with an even number of parts.

Or, we could also interpret it to be the number of ways to write 3n− 1 using powers of two with each part

appearing at most twice, with an odd number of parts.

Theorem 5.3.1. The number of even partitions of 3n+ 2 into powers of 2 with each part appearing at most

twice is equal to the number of odd partitions of 3n + 2 into powers of 2 with each part appearing at most

twice.
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Proof. Consider the generating function

∞∏
j=0

(1 + yx2
j

+ x2
j+1

) =

∞∑
n=0

∞∑
m=0

am,ny
mxn.

The am,n count the number of ways to write n as
∑∞
i=0 εi2

i, with εi ∈ {0, 1, 2}, with precisely m εi’s equal

to 1. Let y = −1. If a partition of n has an even number of parts, each appearing exactly once, then am,n

will be positive. If the partition has an odd number of parts, each appearing exactly once, then am,n will be

negative. Also, if a part appears 0 or 2 times, this does not change the sign of am,n, so that this generating

function counts the number of even partitions and the odd partitions for n. Expanding this generating

function, we have

∞∏
j=0

(1− x2
j

+ x2
j+1

) =

∞∏
j=0

(1− x2j + x2
j+1

)(1 + x2
j

+ x2
j+1

)(1− x2j )
(1− x3·2j )

=

∞∏
j=0

(1 + x2
j+1

+ x2
j+2

)(1− x2j )
(1− x3·2j )

= (1− x)

∞∏
j=0

(1 + x2
j+1

+ x2
j+2

)(1− x2j+1

)

(1− x3·2j )

= (1− x)

∞∏
j=0

(1− x3·2j+1

)

(1− x3·2j )

=
1− x
1− x3

= 1− x+ x3 − x4 + x6 − x7 + · · · . (5.3)

The missing terms are those with powers congruent to 2 modulo 3. Hence, for numbers of the form 3k + 2,

the number of even partitions is equal to the number of odd partitions.

In the future, we hope to find a bijective proof of this theorem.

5.4 Generating Function

What will the generating function for w(n) be? Will it be similar to the generating function for s(n)?

Let

W(x) =

∞∑
n=0

w(n)xn

be the generating function for w(n). Recall that for n ≥ 1, w(n) can be independently defined by the
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recursions

w(2n) = w(n)

w(8n± 1) = w(4n± 1) + 2w(n), (5.4)

w(8n± 3) = w(4n± 1) + w(2n± 1)− w(n), (5.5)

with w(0) = 0, w(1) = 1, and w(3) = 2. We will use these recurrences to find a recurrence for the generating

function.

First, we split up the sum into arithmetic progressions modulo 8. We have

∞∑
n=0

w(n)xn =

∞∑
n=0

w(8n)x8n +

∞∑
n=0

w(8n+ 1)x8n+1 + · · ·+
∞∑
n=0

w(8n+ 6)x8n+6 +

∞∑
n=0

w(8n+ 7)x8n+7

=

∞∑
n=0

(w(4n)(x2)4n + w(4n+ 1)(x2)4n+1 + w(4n+ 2)(x2)4n+2 + w(4n+ 3)(x2)4n+3)

+

∞∑
n=0

w(8n+ 1)x8n+1 +

∞∑
n=0

w(8n+ 3)x8n+3 +

∞∑
n=0

w(8n+ 5)x8n+5 +

∞∑
n=0

w(8n+ 7)x8n+7

=

∞∑
n=0

w(n)(x2)n +

∞∑
n=0

w(8n+ 1)x8n+1 + · · ·+
∞∑
n=0

w(8n+ 7)x8n+7.

Then using (5.4) and (5.5), we have

W(x) =W(x2) +

∞∑
n=0

[w(4n+ 1) + 2w(n)]x8n+1 +

∞∑
n=0

[w(4n+ 1) + w(2n+ 1)− w(n)](x)8n+3

+

∞∑
n=1

[w(4n− 1) + w(2n− 1)− w(n)](x)8n−3 +

∞∑
n=1

[w(4n− 1) + 2w(n)]x8n−1

=W(x2) + 2(x+ x−1)W(x8) + (x+ x−1)

∞∑
n=0

w(4n+ 1)(x2)4n+1

+ (x+ x−1)

∞∑
n=0

w(4n+ 3)(x2)4n+3 + (x+ x−1)

∞∑
n=0

w(4n+ 2)(x2)4n+2

− (x3 + x−3)

∞∑
n=0

w(n)(x8)n

=W(x2)− (x3 − x− x−1 + x−3)W(x8) + (x+ x−1)

∞∑
n=0

w(4n)(x2)4n

+ (x+ x−1)

∞∑
n=0

[w(4n+ 1)(x2)4n+1 + w(4n+ 3)(x2)4n+3 + w(4n+ 2)(x2)4n+2]

=W(x2)− (x3 − x− x−1 + x−3)W(x8) + (x+ x−1)W(x2)

= (x+ 1 + x−1)W(x2)− (x3 − x− x−1 + x−3)W(x8).
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Since w(0) = s(0) = 0, we deduceW(0) = 0, and thus we can writeW(x) = xT (x). RewritingW(x) = xT (x)

in the last line above, we find

W(x) = xT (x) = x2(x−1 + 1 + x)T (x2)− x8(x−3 − x−1 − x+ x3)T (x8), (5.6)

which implies

T (x) = (1 + x+ x2)T (x2)− x4(1− x2 − x4 + x6)T (x8).

The first expression on the right-hand side satisfies the same recurrence relation which is iterated to obtain

the generating function for the Stern sequence. However, the second expression on the right-hand side

introduces a perturbation to the recurrence relation for the Stern generating function, making it difficult to

compute a nice product representation for the generating function of w(n).

Another approach employs the third root of unity, ω. If f(x) =
∑∞
n=0 anx

n, then

f(x) + f(ωx) + f(ω2x) = 3

∞∑
t=0

a3tx
3t.

This implies

1

6
(S(x) + S(ωx) + S(ω2x)) =

∞∑
t=0

1

2
s(3t)x3t,

so that

W(x) =
1

6
(S(x1/3) + S(ωx1/3) + S(ω2x1/3)).

However, this formula for the generating function, while closed, is not very useful. We hope to find an even

better form for the generating function in the future.
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Chapter 6

Maximum Values for w(n)

The maximum value in a row of the Stern sequence is a Fibonacci number. What will the maximum value

for w(n) be?

6.1 Maximum Values for w(n)

Since w(n) is derived from the Stern sequence, we expect to find the maximum values for each row of w(n)

by knowing the largest even number in a row for the Stern sequence. More specifically, we only need consider

the three largest values in a row. Since L1(r), L2(r), and L3(r) each satisfy a Fibonacci recurrence which is

not all even, every third term in the sequence is even. This simply comes from the fact odd + even = odd,

even + odd = odd, and odd + odd = even. So the maximum of w(n) in a row occurs precisely when one of

L1(r), L2(r),or L3(r) is even and then it is divided by two. Please note Table 6.1 gives a comparison of the

three largest values for s(n) for easy reference. The boxed even values in Table 6.1 are divided by 2 to yield

the Mk’s in Table 6.2.

Let Mk be the maximum of w(n) in the k-th row. The maximum values for w(n) and where they occur

are given in Table 6.2. There is a pattern for Mk and where they occur, based on every third row.

The Fibonacci numbers Fr are even when r is a multiple of 3, which implies L1(r) = Fr+2 will be even

when r ≡ 1 (mod 3). Now, L2(r) = Fr+2 − Fr−3, and this will be even only when r ≡ 2 (mod 3). If r ≡ 1

(mod 3), then Fr+2 is even and Fr−3 is odd, so that their sum is odd. If r ≡ 0 (mod 3), then Fr+2 is odd,

and Fr−3 would be even. If r ≡ 2 (mod 3), then both are odd, so that Fr+2 − Fr−3 is even. We have

L3(r) = Fr+2 − 3Fr−5 is even when r ≡ 0 (mod 3).

However, it is important to note the row numbers for w(n) are shifted up one relative to the row numbers

for s(n). To avoid confusion in this section, we will denote the row numbers for s(n) with r and the row

numbers for w(n) with k (with k = r + 1). We then have the following theorem.
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Table 6.1: Comparison of the Three Largest Values of s(n) in rows

row r L1(r) L2(r) L3(r)

1 2 1 N/A

2 3 2 1

3 5 4 3

4 8 7 5

5 13 12 11

6 21 19 18

7 34 31 30

8 55 50 49

9 89 81 80

10 144 131 129

11 233 212 209

12 377 343 338

Table 6.2: Maxima of w(n) in rows

row n Mk row n Mk

2 1 1 13 1817, 1849, 2247, 2279 169
3 2 1 14 3641, 4551 305
4 3, 5 2 15 7281, 7737, 8647, 9103 449
5 7,9 4 16 14567, 14791, 17977, 18201 716
6 15, 17 6 17 29127, 36409 1292
7 25, 29, 35, 39 9 18 58255, 61895, 69177, 72817 1902
8 57, 71 17 19 116505, 118329, 143815, 145639 3033
9 113, 121, 135, 143 25 20 233017, 291271 5473
10 231, 281 40 21 466033, 495161, 533415, 582543 8057
11 455, 569 72 22 932071, 946631, 1150521, 1165081 12848
12 911, 967, 1081, 1137 106 23 1864135, 2330169 23184

Theorem 6.1.1. For k ≥ 5, the maximum value of w(n) in the k-th row is

1

2
Fk+1 −

1

2
Fk−4 when k ≡ 0 mod 3,

1

2
Fk+1 −

3

2
Fk−6 when k ≡ 1 mod 3,

1

2
Fk+1 when k ≡ 2 mod 3.

Proof. This is a consequence of Theorems 2.1.2, 2.2.2, and 2.3.2. Note when the three largest values for s(n)

begin their Fibonacci recurrence (starting at their initial values): L1(r) for all r, L2(r) for r ≥ 4 (k ≥ 5),
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and L3(r) for r ≥ 8 (k ≥ 9). However, in the r = 6-th row (k = 7-th), L3 is 18 and the largest even value

among L1, L2, and L3. We also see that 1
2 (F8 − 3F1) = 1

2 (21− 3) = 1
2 · 18 = 9, so the last condition is also

true for k = 7. This completes the proof.

Remark 7. Since 2|s(n) if and only if 3|n, the maximum of w(n) will occur when 3 divides the values which

produce L1, L2, and L3. This information is organized below in Table 6.3. Also note, every third row Mk

will only occur twice because L1 only appears twice in a row. In the other two rows, the Mk occur four

times, since L2 and L3 occur four times in a row of the diatomic array.

Table 6.3: n1(k) such that w(n1(k)) = Mk

k-th row n1(k) n1(k)
′

k = 4 3 5

k ≡ 2 mod 3 1
9 (4 · 2k−1 − (−1)k−1) 1

9 (5 · 2k−1 + (−1)k−1)

k ≡ 0 mod 3 1
9 (16 · 2k−3 − 7(−1)k−1) 1

9 (20 · 2k−3 + 7(−1)k−1)

1
9 (17 · 2k−3 − (−1)k−1) 1

9 (19 · 2k−3 + (−1)k−1)

k ≡ 1 mod 3 1
9 (64 · 2k−5 − 31(−1)k−1) 1

9 (80 · 2k−5 + 31(−1)k−1)

1
9 (65 · 2k−5 + (−1)k−1) 1

9 (79 · 2k−5 − (−1)k−1)

6.2 Generating Function

Computing the generating functions for M3j+1, M3j+2, and M3j+3, we have

f1(x) = 2x+ 9x2 + 40x3 + 169x4 + 716x5 + · · · , (6.1)

f2(x) = 1 + 4x+ 17x2 + 72x3 + 305x4 + 1292x5 + · · · , (6.2)

f3(x) = 1 + 6x+ 25x2 + 106x3 + 449x4 + 1902x5 + · · · . (6.3)

Then multiplying each of these power series by 1 − 4x − x2, we obtain the following closed representations

for the generating function:

f1(x) =
2x+ x2 + 2x3

1− 4x− x2
, (6.4)

f2(x) =
1

1− 4x− x2
, (6.5)

f3(x) =
1 + 2x

1− 4x− x2
. (6.6)
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The roots of 1−4x−x2 are 2±
√

5, or φ3 and φ
3
. Using partial fraction decompositions, we can express the

generating functions in terms of power series, and then collect coefficients of xn to obtain closed formulas

for the coefficients in (6.1), (6.2), and (6.3). We have

f1(x) = 7− 2x+

(
−7

2
+

9√
5

) ∞∑
n=0

(2 +
√

5)nxn +

(
−7

2
− 9√

5

) ∞∑
n=0

(2−
√

5)nxn, (6.7)

f2(x) =

(
1

2
+

1√
5

) ∞∑
n=0

(2 +
√

5)nxn −
(

1

2
− 1√

5

) ∞∑
n=0

(2−
√

5)nxn, (6.8)

f3(x) =

(
1

2
+

2√
5

) ∞∑
n=0

(2 +
√

5)nxn +

(
1

2
− 2√

5

) ∞∑
n=0

(2−
√

5)nxn. (6.9)

Upon grouping the coefficients for xn, we recover Theorem 6.1.1. Thus, the Mk satisfy a recurrence relation-

ship, and can be put in terms of φ3. By combining the closed forms of f1(x), f2(x), and f3(x) from (6.4),

(6.5), and (6.6), we can obtain a generating function, denoted by M(x), for the maximum values of w(n).

First note that M(x) = xf1(x3) + x2f2(x3) + x3f3(x3). Then we have

M(x) =
x2 + x3 + 2x4 + 2x6 + x7 + 2x10

1− 4x3 − x6
.
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Chapter 7

Recurrence Relations

As mentioned in Chapter 1, Reznick [27] found the reduction formula

s(2rn± j) = s(n)s(2r − j) + s(j)s(n± 1). (7.1)

This formula allows for easier computation of larger values of s(n). Does w(n) have a reduction formula

similar to this?

7.1 Recurrences in Arithmetic Progressions

It would be nice to have a reduction formula for w(2rn±j), and so we examine w(n) in arithmetic progressions

with this goal in mind. We first compute w(n) in arithmetic progressions modulo 16 and 32, hoping to find

a pattern which can easily be generalized. The results are the following:

w(16n± 1) = w(8n± 1) + 2w(n) = w(4n± 1) + 4w(n), (7.2)

w(16n± 3) = 2w(4n± 1) + w(n), (7.3)

w(16n± 5) = 2w(4n± 1)− w(n),

w(16n± 7) = w(8n± 3) + 2w(2n± 1),
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and

w(32n± 1) = w(16n± 1) + 2w(n) = w(8n± 1) + 4w(n) = w(4n± 1) + 6w(n),

w(32n± 3) = w(16n± 3) + 4w(n) = 2w(8n± 1) + w(n) = 2w(4n± 1) + 5w(n),

w(32n± 5) = w(16n± 3) + 2w(n) = 2w(8n± 1)− w(n) = 2w(4n± 1) + 3w(n),

w(32n± 7) = 2w(16n± 3)− w(n) = 4w(8n± 1)− 7w(n) = 4w(4n± 1) + w(n),

w(32n± 9) = 2w(16n± 5) + w(n) = 4w(8n± 1)− 9w(n) = 4w(4n± 1)− w(n),

w(32n± 11) = 2w(16n± 7)− 5w(2n± 1) = 2w(8n± 3)− w(2n± 1),

w(32n± 13) = 2w(16n± 7)− 3w(2n± 1) = 2w(8n± 3) + w(2n± 1),

w(32n± 15) = w(16n± 7) + 2w(2n± 1) = w(8n± 3) + 4w(2n± 1).

Using these recurrences, we can compute the recurrences in arithmetic progressions modulo 64:

w(64n± 1) = w(4n± 1) + 8w(n), w(64n± 17) = 6w(4n± 1)− w(n),

w(64n± 3) = 2w(4n± 1) + 9w(n), w(64n± 19) = 5w(4n± 1)− 2w(n),

w(64n± 5) = 2w(4n± 1) + 7w(n), w(64n± 21) = 3w(4n± 1)− 2w(n),

w(64n± 7) = 4w(4n± 1) + 9w(n), w(64n± 23) = 4w(8n± 3)− w(2n± 1),

w(64n± 9) = 4w(4n± 1) + 7w(n), w(64n± 25) = 4w(8n± 3) + w(2n± 1),

w(64n± 11) = 2w(16n± 3)− w(4n± 1) w(64n± 27) = 2w(8n± 3) + 3w(2n± 1),

= 3w(4n± 1) + 2w(n), w(64n± 29) = 2w(8n± 3) + 5w(2n± 1)

w(64n± 13) = 2w(16n± 3) + w(4n± 1) = 2w(4n± 1) + 7w(2n± 1)− 2w(n),

= 5w(4n± 1) + 2w(n), w(64n± 31) = w(8n± 3) + 6w(2n± 1)

w(64n± 15) = 6w(4n± 1) + w(n), = w(4n± 1) + 7w(2n± 1)− w(n).

If we examine w(2kn± 1), we see a nice pattern emerge:

w(8n± 1) = w(4n± 1) + 2w(n), w(32n± 1) = w(16n± 1) + 2w(n)

w(16n± 1) = w(8n± 1) + 2w(n) = w(8n± 1) + 4w(n)

= w(4n± 1) + 4w(n), = w(4n± 1) + 6w(n).
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This evidence then suggests the following theorem.

Theorem 7.1.1. For 1 ≤ r ≤ k − 2 and k ≥ 2, we have

w(2kn± 1) = w(2k−rn± 1) + 2rw(n) = w(4n± 1) + 2(k − 2)w(n).

Proof. Using (7.1), we see

w(2kn± 1) =
1

2
s(2k(3n)± 3) =

1

2
[s(3n)s(2k − 3) + s(3)s(3n± 1)]

=
1

2
[s(3n)(2k − 3) + 2s(3n± 1)] = (2k − 3)w(n) + s(3n± 1).

If we iterate the process with w(2k−rn ± 1), we have w(2k−rn ± 1) = (2(k − r) − 3)w(n) + s(3n ± 1).

Substituting the first equation into the second and rearranging yields the result. The last part of the above

equation is obtained by iteration, or by setting r = k − 2.

If we examine the next few entries in the data, we have

w(16n± 3) = 2w(4n± 1) + w(n),

w(32n± 3) = 2w(4n± 1) + 5w(n),

w(64n± 3) = 2w(4n± 1) + 9w(n).

This leads us to the next theorem.

Theorem 7.1.2. For k > 3,

w(2kn± 3) = 2w(2k−2n± 1) + w(n) = 2w(4n± 1) + (4(k − 4) + 1)w(n).

Proof. Using w(25n ± 3) = 2w(23n ± 1) + w(n) and replacing n with 2k−5n, we obtain the first result. By

iterating Theorem 7.1.1, we obtain the second.

Similarly, we arrive at the following theorem.

Theorem 7.1.3. For k > 3,

w(2kn± 5) = 2w(2k−2n± 1)− w(n) = 2w(4n± 1) + (4(k − 4)− 1)w(n).
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Proof. Using w(24n± 5) = 2w(22n± 1)−w(n) and replacing n with 2k−4n, we obtain the first result. Then

by iterating Theorem 7.1.1, we have the last equality.

Another pattern emerged after computing even more recurrence formulas, which led to the following

theorem.

Theorem 7.1.4. For k ≥ 4,

w(2kn± (2k−1 − 1)) = w(8n± 3) + 2(k − 3)w(2n± 1).

Proof. Note that w(2kn± (2k−1−1)) = w(2k−1(2n±1) ∓1), and by substituting n with 2n±1 in Theorem

7.1.1, we obtain the desired result.

7.2 Reduction Formulas

0
1
1

2 1 2
2 4 1 4 2

3 2 5 4 6 1 6 4 5 2 3
3 7 2 9 5 7 4 9 6 8 1 8 6 9 4 7 5 9 2 7 3

Table 7.1: Triangular Array for w(n)

When writing the table of values for w(n) in a triangular array, we see that the values follow arithmetic

progressions down the columns. We can then easily obtain formulas for these by using the recurrence

formulas and definition of s(n):

w(2k) = 1,

w(2k ± 1) = 2(k − 1),

w(2k ± 3) = 4(k − 3) + 1, k ≥ 4,

w(2k ± 5) = 4(k − 4) + 3, k ≥ 4.

We can also recover the formula w(2k±1) = 2(k−1) from Theorem 7.1.1, by letting n = 1 in Theorem 7.1.1
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and replacing r with k − 2. Then we find that

w(2k ± 1) = w(2k−(k−2) ± 1) + 2(k − 2)w(1)

= w(4± 1) + 2(k − 2) = 2 + 2(k − 2) = 2(k − 1).

In fact, all of the above formulas can be recovered in a similar way from Theorems 7.1.1, 7.1.2, and 7.1.3. In

order to obtain a general formula for w(2k±j), similar formulas can be computed using this same technique:

w(2k ± 3) = 4(k − 4) + 5, k ≥ 4 w(2k ± 19) = 10(k − 6) + 8, k ≥ 6

w(2k ± 5) = 4(k − 4) + 3, k ≥ 4 w(2k ± 21) = 6(k − 6) + 4, k ≥ 6

w(2k ± 7) = 8(k − 5) + 9, k ≥ 5 w(2k ± 23) = 14(k − 7) + 18, k ≥ 7

w(2k ± 9) = 8(k − 5) + 7, k ≥ 5 w(2k ± 25) = 18(k − 7) + 22, k ≥ 7

w(2k ± 11) = 6(k − 6) + 8, k ≥ 6 w(2k ± 27) = 12(k − 7) + 16, k ≥ 7

w(2k ± 13) = 10(k − 6) + 12, k ≥ 6 w(2k ± 29) = 18(k − 7) + 20, k ≥ 7

w(2k ± 15) = 12(k − 6) + 13, k ≥ 6 w(2k ± 31) = 16(k − 7) + 17, k ≥ 7.

w(2k ± 17) = 12(k − 6) + 11, k ≥ 6,

The values of k for which these formulas are valid depend upon the row in the triangular array in which it

starts. Since w(n) is based upon s(3n), we can then expect w(2k±(2j+1)) will appear in the blog2(3(2j+1))c-

th row. Analysis of these examples leads to the following theorem.

Theorem 7.2.1. If j = 2m ±1 1 and k ≥ m+ 1, then w(2k ±2 j) = 2w(j)(k − r)∓1 1, where r = m+ 1 =

blog2(3j)c.

We use ±1 and ±2 to distinguish between the two possible sign options, and that the signs are independent

of one another. This makes it clear that the sign in 2w(j)(k− r)∓ 1 only depends on the sign of j = 2m± 1,

and not the sign in w(2k ± j).

Proof. Let j = 2m + 1. Then clearly 2m+1 < 3j < 2m+2, so that r = m + 1. Then using Theorem 7.1.1
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twice, first with n = 2k−m ± 1 and then again with n = 1, we find that

w(2k ±2 (2m + 1)) = w(2m(2k−m ±2 1)±2 1)

= w(22(2k−m ±2 1)±2 1) + 2(m− 2)w(2k−m ±2 1)

= w(2k−m+2 ± 5) + 2(m− 2)w(2k−m ±2 1).

Then by using Theorems 7.1.1, 7.1.2, and 7.1.3 with n = 1, and noting that w(4± 1) = 2, we have

w(2k ±2 (2m + 1)) = 4 + (4(k −m+ 2− 4)− 1) + 4(m− 2) + 4(m− 2)(k −m− 2)

= 4(m− 1)(k −m− 1)− 1

= 2 · 2(m− 1)(k − r)− 1.

Similarly, if j = 2m − 1, we have

w(2k ±2 (2m − 1)) = w(2m(2k−m ±2 1)∓2 1)

= w(22(2k−m ±2 1)∓2 1) + 2(m− 2)w(2k−m ±2 1)

= w(2k−m+2 ± 3) + 2(m− 2)w(2k−m ±2 1).

Then by using Theorems 7.1.1, 7.1.2, and 7.1.3 with n = 1, and noting that w(4± 1) = 2, we have

w(2k ±2 (2m − 1)) = 4 + (4(k −m+ 2− 4) + 1) + 4(m− 2) + 4(m− 2)(k −m− 2)

= 4(m− 1)(k −m− 1) + 1

= 2 · 2(m− 1)(k − r) + 1.

Then observing that w(j) = w(4± 1) + 2(m− 2) = 2(m− 1) and writing in condensed notation, we obtain

the desired result.

These have all been reduced cases of w(2kn± j) with n = 1, but we want to generalize. Recall that the

middle of a row occurs at 2r−1. If we consider the third row, in which 3 and 5 appear, the middle value is

4. We rewrite some recurrences in a more suggestive way to make the pattern more obvious:

w(16n± 3) = 2w(4n± 1) + w(n) = w(3)w(4n± 1) + (4− 3)w(1)w(n),

w(16n± 5) = 2w(4n± 1)− w(n) = w(5)w(4n± 1) + (4− 5)w(1)w(n).
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This pattern generalizes into the following formula.

Theorem 7.2.2. Let r = r(j) = blog2(3j)c. Then for all n ∈ N and 1 ≤ j < 2k/3, we have

w(2kn± j) = w(j)w(2k−r+1n± 1) + sgn(2r−1 − j)w(|2r−1 − j|)w(n). (7.4)

Proof. We will proceed by double induction, first on k and then on j. Fix n.

For the induction on k, we fix j, which means 2r/3 < j < 2r+1/3 for some r, and k must be greater than

r. For the base case, we set k = r + 1. Using (7.1) and (1.10), we have

w(2r+1n± j) =
1

2
s(2r+1 · 3n± 3j) =

1

2
s(2r+1 − 3j)s(3n) +

1

2
s(3j)s(3n± 1)

= s(2r+1 − 3j)w(n) + w(j)(w(4n± 1)− w(n))

= w(j)w(4n± 1) + w(n)(s(2r+1 − 3j)− w(j)).

We need to show

s(2r+1 − 3j)− w(j) = sgn(2r−1 − j)w(|2r−1 − j|).

There are three cases: either 2r/3 < j < 2r−1, or j = 2r−1, or 2r−1 < j < 2r+1/3. We consider the easiest

case first. If j = 2r−1, then

s(2r+1 − 3j)− w(j) = s(2r+1 − 3 · 2r−1)− w(2r−1) = s(1)− 1 = 0 = sgn(0)w(0).

Secondly, if 1
32r < j < 2r−1, we can rewrite j as j = 2r−1−m, for some m with 1 ≤ m ≤ 2r−1−b 2

r

3 c. Using

(7.1) we have

s(2r+1 − 3j)− w(j) = s(2r+1 − 3(2r−1 −m))− w(2r−1 −m)

= s(2r−1 + 3m)− 1

2
s(2r−13− 3m)

= s(2r−1 − 3m) + s(3m)− 1

2
s(2r−1 − 3m)s(3)− 1

2
s(3m)

=
1

2
s(3m)

= w(m).

Note m = 2r−1 − j = |2r−1 − j|, so that s(2r+1 − 3j)− w(j) = sgn(2r−1 − j)w(|2r−1 − j|).

For the last case, if 2r−1 < j < 1
32r+1, we rewrite j as j = 2r−1 +m, with 1 ≤ m ≤ b 2

r+1

3 c−2r−1. Again,
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using (7.1) we have

s(2r+1 − 3j)− w(j) = s(2r+1 − 3(2r−1 +m))− w(2r−1 +m)

= s(2r−1 − 3m)− 1

2
s(2r−13 + 3m)

= s(2r−1 − 3m)− 1

2
s(2r−1 − 3m)s(3)− 1

2
s(3m)

= −1

2
s(3m) = −w(m)

= sgn(2r−1 − j)w(|2r−1 − j|),

since 2r−1 − j < 0 and 2r−1 − j = −m. This finishes the base case.

Now assume (7.4) is true for k < K. Then rearranging and using the induction hypothesis, we have

w(2Kn± j) = w(2K−1(2n)± j)

= w(j)w(2K−1+r+1(2n)± 1) + sgn(2r−1 − j)w(|2r−1 − j|)w(2n)

= w(j)w(2K−r+1n± 1) + sgn(2r−1 − j)w(|2r−1 − j|)w(n).

Thus, (7.4) holds for all k > r and fixed j.

We now induct on j. For the base case j = 1, the statement is trivially true, as we have w(2kn ± 1) =

w(2kn ± 1). Assume (7.4) is true for all j ≤ N . We also assume k > r(N) and that (7.4) holds for all

k > r(N). Then we need to show

w(2`+1n± (N + 1)) = w(N + 1)w(4n± 1) + sgn(2`−1 − (N + 1))w(|2`−1 − (N + 1)|)w(n),

where ` = r(N + 1) denotes the row number of N + 1. (Since the parameter j is not fixed, the row number

is also not fixed, and we use r(j) as a function of j.) Then we can rewrite N + 1 as N + 1 = 2`−1 ±m for

some positive integer m with 1 ≤ m < 2`−1

3 . We have

w(2`+1n± (N + 1)) = w(2`+1n± (2`−1 ±m)) = w(2`−1(4n± 1)±m).
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Now, we have r(m) < `− 1, so that (7.4) holds. Applying (7.4), we have

w(2`+1n± (N + 1)) = w(m)w(2`−r(m)(4n± 1)± 1)

+ sgn(2r(m)−1 −m)w(|2r(m)−1 −m|)w(4n± 1)

= w(m)w(2`−r(m)+2n± (2`−r(m) ± 1))

+ sgn(2r(m)−1 −m)w(|2r(m)−1 −m|)w(4n± 1).

We again apply (7.4), but this time on w(2`−r(m)+2n± (2`−r(m) ± 1)). If we let a = 2`−r(m) ± 1, note that

r(a) = `− r(m) + 1. This means 2r(a)−1 − a = ∓1. So we have

w(2`+1n± (N + 1)) = w(m)(w(4n± 1)w(2`−r(m) ± 1) + sgn(∓1)w(| ∓ 1|)w(n))

+ sgn(2r(m)−1 −m)w(|2r(m)−1 −m|)w(4n± 1)

= w(m)(w(4n± 1)w(2`−r(m) ± 1) + sgn(∓1)w(n))

+ sgn(2r(m)−1 −m)w(|2r(m)−1 −m|)w(4n± 1)

= (w(m)w(2`−r(m) ± 1) + sgn(2r(m)−1 −m)w(|2r(m)−1 −m|))w(4n± 1)

+ sgn(∓1)w(m)w(n).

Using (7.4), we have

w(m)w(2`−r(m) ± 1) + sgn(2r(m)−1 −m)w(|2r(m)−1 −m|) = w(2`−1 ±m),

and noting that 2`−1 ±m = N + 1, we have

w(2`+1n± (N + 1)) = w(2`−1 ±m)w(4n± 1) + sgn(∓1)w(m)w(n)

= w(N + 1)w(4n± 1) + sgn(∓1)w(m))w(n).

Note that |m| = |2`−1−(N+1)|. If N+1 = 2`−1+m then 2`−1−(N+1)) is negative, and if N+1 = 2`−1−m,

then 2`−1 − (N + 1)) is positive, so that

w(2`+1n± (N + 1)) = w(N + 1)w(4n± 1) + sgn(2`−1 − (N + 1))w(|2`−1 − (N + 1)|)w(n).

Thus, if (7.4) holds for N , it also holds for N + 1.
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The terms which involve 2r(j)−1 − j seem very complicated, but in some way, they measure the distance

to the middle of the row and the sgn(2r(j)−1−j) keeps track of whether it is to the left or right of the middle

of the row.

Remark 8. Since the case j = 1 gives no new information, Theorem 7.1.1 is necessary and stands by itself.

Also note Theorems 7.1.2 and 7.1.3 are special cases. The previous computations of w(2k ± j) could also be

found by setting n = 1 and the value for j, and using w(2k−r+1 ± 1) = 2(k − r). With a bit of rewriting,

Theorem 7.2.1 is also a special case of Theorem 7.2.2. In (7.4), let n = 1 and j = 2m±1. Then r(j) = m+1,

and using Theorem 7.1.1 we have

w(2k ± j) = w(j)w(2k−r+1 ± 1) + sgn(2r−1 − j)w(|2r−1 − j|)

= w(j)w(2k−m ± 1) + sgn(2m − (2m ± 1))w(|2m − (2m ± 1)|)

= w(j)(w(4± 1) + 2(k −m− 2))∓ w(1)

= w(j)(2 + 2(k −m− 2))∓ 1

= w(j)(2 + 2(k − (m+ 1)− 1))∓ 1

= 2w(j)(k − r)∓ 1.
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Chapter 8

GCD’s of Consecutive Terms

The Stern sequence has the property that gcd(s(n), s(n+ 1)) = 1 for all n. In addition to this property, we

have for any a and b relatively prime, there is an n such that s(n) = a and s(n+ 1) = b. We ask, does w(n)

inherit any of these nice properties as well?

8.1 Two Consecutive Terms

Upon examination of Table 5.1, we see it is not true that gcd(w(n), w(n + 1)) = 1 for all n. For example,

w(5) = w(6) = 2. If consecutive terms are not relatively prime, what values may the greatest common

divisor take? Are all values possible?

Theorem 8.1.1. For any integer a > 0, there is an n such that gcd(w(n), w(n+ 1)) = a.

Proof. Let n = (4a − 1)/3. Then using the Stern sequence to evaluate this, and recalling s(2r + 1) = r + 1

and s(2r − 1) = r, we have

w

(
4a − 1

3

)
=

1

2
s(22a − 1) =

1

2
(2a) = a,

and

w

(
4a − 1

3
+ 1

)
=

1

2
s(22a − 1 + 3) =

1

2
s(22a + 2)

=
1

2
s(22a−1 + 1) =

1

2
(2a− 1 + 1) = a.

Thus, gcd(w(n), w(n+ 1)) = a.

Remark 9. Let g(n) := gcd(w(n), w(n + 1)). While such an n exists, it need not be unique. For example,

w(5) = w(6) = 2, and w(7) = 4, so that for n = 5 and n = 6, we have g(5) = g(6) = 2.

Considering consecutive terms, we can also ask, what is the probability g(n) = 1? Using Mathematica to

compute these values, we have Table 8.1, which gives the empirical probability that w(n) and w(n+ 1) are

relatively prime for n ∈ [1, 2N ] and varying N . Besides the second row where the probability is 1, the next

57



Table 8.1: Percentage that g(n) = 1 for n ∈ [1, 2N ]

N P (g(n)) = 1 N P (g(n) = 1) N P (g(n) = 1)
2 1.0 8 0.7851 14 0.7904
3 0.75 9 0.7715 15 0.7913
4 0.75 10 0.7900 16 0.7939
5 0.75 11 0.8012 17 0.7949
6 0.8125 12 0.7988 18 0.7938
7 0.8125 13 0.7931 19 0.7929

highest probability seems to be 0.8125, with minimum values of 0.75. As N grows larger, the probability

seems to oscillate quite a bit, but stays chiefly between 0.79 and 0.81. Does the probability converge to any

value as N increases, or is it periodic? The data in Table 8.1 suggests the value stays around 0.793. We can

also look at this data in arithmetic progressions modulo 4. First we note a special case modulo 4.

Theorem 8.1.2. For all natural numbers n, we have gcd(w(4n), w(4n+1)) = gcd(w(4n+3), w(4n+4)) = 1.

Proof. This follows from using (1.8) and (1.9), as well as the fact that consecutive terms in the Stern sequence

are relatively prime. We have

gcd(w(4n), w(4n+ 1)) = gcd

(
1

2
s(3n),

1

2
s(3n) + s(3n+ 1)

)
= gcd

(
1

2
s(3n), s(3n+ 1)

)
= 1,

gcd(w(4n+ 3), w(4n+ 4)) = gcd

(
1

2
s(3n+ 3),

1

2
s(3n+ 3) + s(3n+ 2)

)
= gcd

(
1

2
s(3n+ 3), s(3n+ 2)

)
= 1.

Looking at the other possible pairs in the progression modulo 4, we have Table 8.2. As N increases, these

Table 8.2: Percentage that g(4n+ 1) = 1, g(4n+ 2) = 1 for n ∈ [1, 2N ]

N P (g(4n+ 1) = 1) P (g(4n+ 2) = 1) N P (g(4n+ 1) = 1) P (g(4n+ 2) = 1)
4 0.5625 0.6250 10 0.5986 0.5957
5 0.5625 0.6563 11 0.5806 0.5913
6 0.5313 0.5781 12 0.5823 0.5786
7 0.5391 0.5391 13 0.5814 0.5836
8 0.5625 0.5938 18 0.5859 0.5858
9 0.6016 0.5996 20 0.5868 0.5865

values seem to oscillate around 0.58. Note that since g(4n) = g(4n + 3) = 1, and g(4n + 1) and g(4n + 2)

are around 0.58, then g(n) is around (1 + 0.58)/2 = 0.79, as expected.
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8.2 Three and Four Consecutive Terms

What about the greatest common divisor of three consecutive terms? Generalizing g(n), let

gk(n) := gcd(w(n), w(n+ 1), . . . , w(n+ k)).

Using Theorem 8.1.2, we have the following corollaries.

Corollary 8.2.1. For all natural numbers n,

g2(4n) = g2(4n+ 2) = g2(4n+ 3).

Proof. Since gcd(w(4n), w(4n+1)) = gcd(w(4n+3), w(4n+4)) = 1, then the greatest common divisor when

adding a consecutive third term is still 1.

Note that g2(4n+ 1) does not appear, since we have that gcd(w(5), w(6), w(7)) = 2.

Corollary 8.2.2. For all natural numbers n, we have g3(n) = 1.

Proof. If three terms are relatively prime, then when adding a fourth term, the greatest common factor is

still 1. Since

gcd(w(4n), w(4n+ 1), w(4n+ 2)) = gcd(w(4n+ 2), w(4n+ 3), w(4n+ 4))

= gcd(w(4n+ 3), w(4n+ 4), w(4n+ 5)) = 1,

then any 4 consecutive terms in an arithmetic progression modulo 4 are relatively prime, so that g3(n) = 1

holds for all n.

Then by the process of elimination, the greatest common divisor of w(4n+ 1), w(4n+ 2), and w(4n+ 3))

is not always 1. However, the frequency with which for this 3-tuple is not relatively prime is quite small,

as evidenced by Table 8.3. Most of the time it appears that three consecutive terms are relatively prime.

When they are not relatively prime, data suggests the greatest common divisor is 2. Since the empirical

probability that these three terms are relatively prime is relatively high, is there a branch of this arithmetic

progression where the common divisor is 2 more often? Is g2(4n+ 1) unbounded? If we examine g2(8n+ 1)

and g2(8n + 5), the empirical probability that the greatest common divisor is 1 does not change from that

of g2(4n + 1). However, considering g2(16n + 1), g2(16n + 5), g2(16n + 9), and g2(16n + 13), we notice

g2(16n+ 1) and g2(16n+ 13) seem to only take the value 1. This leads us to the following theorem.
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Table 8.3: Percentage that g2(4n+ 1) = 1 for n ∈ [1, 2N ]

N P (g2(4n+ 1) = 1) N P (g2(4n+ 1) = 1)
5 0.84375 13 0.833374
6 0.796875 14 0.836121
7 0.804688 15 0.834686
8 0.839844 16 0.832626
9 0.849609 17 0.832298

10 0.838867 18 0.833172
11 0.827637 19 0.833769
12 0.827881 20 0.833632

Theorem 8.2.3. For all n ∈ N, we have

gcd(w(16n+ 1), w(16n+ 2), w(16n+ 3)) = gcd(w(16n+ 13), w(16n+ 14), w(16n+ 15)) = 1.

Proof. First consider gcd(w(16n+ 1), w(16n+ 2), w(16n+ 3)). Using (7.2), (7.3), (1.6) and (1.8), we have

gcd(w(16n+ 1), w(16n+ 2), w(16n+ 3)) = gcd(w(4n+ 1) + 4w(n), w(8n+ 1), 2w(4n+ 1) + w(n))

= gcd(w(4n+ 1) + 4w(n), w(4n+ 1) + 2w(n), 2w(4n+ 1) + w(n))

= gcd(2w(n), w(4n+ 1) + 2w(n), 2w(4n+ 1) + w(n))

= gcd(2w(n), w(4n+ 1), 2w(4n+ 1) + w(n))

= gcd(w(4n+ 1), w(n))

= gcd(w(n) + s(3n+ 1), w(n))

= gcd(s(3n+ 1), w(n))

= gcd(s(3n+ 1),
1

2
s(3n))

= 1.

Now consider gcd(w(16n + 13), w(16n + 14), w(16n + 15)). Similarly, using (7.2), (7.3), (1.6) and (1.9), we
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have

gcd(w(16n+ 13), w(16n+ 14), w(16n+ 15)) = gcd(2w(4n+ 3) + w(n+ 1), w(8n+ 7), w(4n+ 3) + 4w(n+ 1))

= gcd(2w(4n+ 3) + w(n+ 1), w(4n+ 3) + 2w(n+ 1), w(4n+ 3) + 4w(n+ 1))

= gcd(2w(4n+ 3) + w(n+ 1), w(4n+ 3) + 2w(n+ 1), 2w(n+ 1))

= gcd(2w(4n+ 3) + w(n+ 1), w(4n+ 3), 2w(n+ 1))

= gcd(w(n+ 1), w(4n+ 3), 2w(n+ 1))

= gcd(w(n+ 1), w(4n+ 3))

= gcd(w(n+ 1), w(n+ 1) + s(3n+ 2))

= gcd(w(n+ 1), s(3n+ 2))

= gcd

(
1

2
s(3n+ 3), s(3n+ 2)

)
= 1.

If we examine more branches of gcd(4n+ 1, 4n+ 2, 4n+ 2), with higher powers of 2 within the arithmetic

progression, the data suggests g2(64n+ 9), g2(64n+ 53), g2(256n+ 85), and g2(256n+ 213) are always 1.
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Chapter 9

w(n) Modulo 2

The Stern sequence has a combinatorial interpretation in terms of a generalized binary representation. The

corresponding generating functions for these generalized binary representations will also be periodic (see

[1]). Finding an explicit form of the generating function for w(n) is not easy, and there is no obvious

combinatorial interpretation independent of s(n). As a means of finding a combinatorial interpretation in

terms of generalized binary representations, we examine to see if w(n) is periodic modulo 2.

9.1 Two Consecutive Terms Modulo 2

In this chapter, we consider the frequency of the pairs (w(n) (mod 2), w(n+ 1) (mod 2)), and we show that

each of (0, 0), (0, 1), (1, 0), and (1, 1) has a limiting frequency.

Theorem 9.1.1. The probability of (w(n), w(n+1)) = (1, 0) (mod 2), and (w(n), w(n+1)) = (0, 1) (mod 2)

is 1/3, while the probability of (w(n), w(n + 1)) = (0, 0) (mod 2) and (w(n), w(n + 1)) = (1, 1) (mod 2) is

1/6.

Surprisingly, the proof of this depends not only on the parity of w(n) and w(n + 1), but also on the

parity of w(2n + 1). We first need several helpful lemmas and theorems. The methodology used to prove

this theorem is taken from [27]. We first show only six cases are possible and then use matrix theory to

show that each case is equally likely.

Lemma 9.1.2. For all n, it is never the case that w(n) ≡ w(n+ 1) ≡ w(2n+ 1) (mod 2).

Proof. First note that w(n) ≡ w(n+ 1) ≡ w(2n+ 1) (mod 2) is equivalent to s(3n) ≡ s(3n+ 3) ≡ s(6n+ 3)

(mod 4). If n is even, we write n = 2m, and we have

s(3n) = s(6m) = s(3m),

s(3n+ 3) = s(6m+ 3) = s(3m+ 1) + s(3m+ 2),

s(6n+ 3) = s(12m+ 3) = s(3m) + 2s(3m+ 1).
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If s(3n) ≡ 0 (mod 4), then s(6n + 3) will be congruent to 2 modulo 4 since s(3m + 1) is odd. Similarly, if

s(3n) ≡ 2 (mod 4), then s(6n+ 3) ≡ 2 + 2 ≡ 0 (mod 4).

If n is odd, we write n = 2m+ 1, and we have

s(3n) = s(6m+ 3) = s(3m+ 1) + s(3m+ 2),

s(3n+ 3) = s(6m+ 6) = s(3m+ 3),

s(6n+ 3) = s(12m+ 9) = s(3m+ 3) + 2s(3m+ 2).

If s(3n+ 3) ≡ 0 (mod 4), then s(6n+ 3) will be congruent to 2 modulo 4 since s(3m+ 1) is odd. Similarly,

if s(3n+ 3) ≡ 2 (mod 4), then s(6n+ 3) ≡ 2 + 2 ≡ 0 (mod 4).

Thus, if w(n) and w(n+ 1) are even, then w(2n+ 1) will be odd, and if w(n) and w(n+ 1) are odd, then

w(2n+ 1) will be even.

Next, we show the remaining 6 possible outcomes for parity are equally likely.

Definition 9.1.3. Let Ak(`, r) := #{` · 2r ≤ n < (` + 1) · 2r : (w(n), w(n + 1), w(2n + 1)) ≡ ak (mod 2)},

where

a1 = (0, 0, 1), a2 = (0, 1, 0), a3 = (0, 1, 1),

a4 = (1, 0, 0), a5 = (1, 0, 1), a6 = (1, 1, 0).

We note that Ak(`, r) counts the number of times each 3-tuple occurs, between scaled powers of 2. These

counting functions satisfy recurrence relationships, and we have the following theorem.

Theorem 9.1.4. For all r ≥ 0 and ` ≥ 0,

A1(`, r + 1) = A2(`, r) +A4(`, r),

A2(`, r + 1) = A2(`, r) +A6(`, r),

A3(`, r + 1) = A1(`, r) +A3(`, r),

A4(`, r + 1) = A4(`, r) +A6(`, r),

A5(`, r + 1) = A1(`, r) +A5(`, r),

A6(`, r + 1) = A3(`, r) +A5(`, r),

with A1(1, 0) = A2(1, 0) = A3(1, 0) = A4(1, 0) = A5(1, 0) = 0, and A6(1, 0) = 1. We also have Ak(`, 0) = 1
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for some k and Aj(`, 0) = 0 for all j 6= k.

Proof. We proceed by induction. For Ak(1, 0), we only have (w(1), w(2), w(3)) ≡ (1, 1, 0) (mod 2), so that

A6(1, 0) = 1 and Ak(1, 0) = 0 for k 6= 6. For Ak(1, 1), we have 2 ≤ n < 4, and

(w(2), w(3), w(5)) ≡ (1, 0, 0) (mod 2) and (w(3), w(4), w(6)) ≡ (0, 1, 0) (mod 2),

so that the above recurrences hold for Ak(1, 1). Also note

Ak(`, 0) = #{` ≤ n < `+ 1 : (w(n), w(n+ 1), w(2n+ 1)) ≡ ak (mod 2)},

which means Ak(`, 0) = 1 for some k and Aj(`, 0) = 0 for all j 6= k.

Now assume the recurrences are true up to some r. First note

w(4n+ 1) = w(n) + s(3n+ 1) ≡ w(n) + 1 (mod 2),

so that w(4n+ 1) will have opposite parity to w(n), since s(3n+ 1) is always odd. Similarly, we have

w(4n+ 3) = w(n+ 1) + s(3n+ 2) ≡ w(n+ 1) + 1 (mod 2).

Then if (w(n), w(n+ 1), w(2n+ 1)) ≡ (A,B,C) modulo 2, we have

(w(2n), w(2n+ 1), w(4n+ 1)) ≡ (A,C,A+ 1) (mod 2), and (9.1)

(w(2n+ 1), w(2n+ 2), w(4n+ 3)) ≡ (C,B,B + 1) (mod 2). (9.2)

This means if we know (w(n), w(n+ 1), w(2n+ 1)) ≡ ak, then we can determine what happens at the next

level up, for higher values. For example, if (w(n), w(n+ 1), w(2n+ 1)) ≡ (0, 0, 1), then

(w(2n), w(2n+ 1), w(4n+ 1)) ≡ (0, 1, 1), and

(w(2n+ 1), w(2n+ 2), w(4n+ 3)) ≡ (1, 0, 1).

We can also use this to go the other direction and calculate Ak(`, r + 1), based on which Aj(`, r) lead into

it. We have Ak(`, r + 1) counts the ` · 2r+1 ≤ n < (` + 1) · 2r+1 such that (w(n), w(n + 1), w(2n + 1)) ≡

ak, and if n = 2m or n = 2m + 1, this reduces to counting the ` · 2r ≤ m < (` + 1) · 2r such that

(w(2m), w(2m+ 1), w(4m+ 1)) ≡ ak or (w(2m+ 1), w(2m+ 2), w(4m+ 3)) ≡ ak. Then using (9.1), we find
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the Aj(`, r) which satisfy these equivalences, and this gives us the recurrences. The recursions can be drawn

into a planar graph, as shown in Figure 9.1.

a1

a2a3 a4 a5

a6

Figure 9.1: Graph of Recursions

In Figure 9.1, an arrow from a state ai to another state aj occurs when n is replaced by 2n or 2n + 1

and the state aj is the outcome. We recover the recurrences by taking a state ak and finding the ai’s which

have arrows leading to ak.

For example, to find A1(`, r+1), we consider a1 in Figure 9.1 and see that a2 and a4 have arrows leading

to a1. This means A1(`, r + 1) = A2(`, r) + A4(`, r). We do this with each of the Ak(`, r + 1), and in this

way recover all of the recurrences. Thus, if the recurrences are true for integers less than r, this implies they

are also true for r + 1, and thus they are true for all r ≥ 0.

We can define a transition matrix based off these recurrences. We have

A1(`, r + 1)

A2(`, r + 1)

A3(`, r + 1)

A4(`, r + 1)

A5(`, r + 1)

A6(`, r + 1)


=



0 1 0 1 0 0

0 1 0 0 0 1

1 0 1 0 0 0

0 0 0 1 0 1

1 0 0 0 1 0

0 0 1 0 1 0





A1(`, r)

A2(`, r)

A3(`, r)

A4(`, r)

A5(`, r)

A6(`, r)


.
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Iterating the recurrence relations, we also have



A1(`, r)

A2(`, r)

A3(`, r)

A4(`, r)

A5(`, r)

A6(`, r)


=



0 1 0 1 0 0

0 1 0 0 0 1

1 0 1 0 0 0

0 0 0 1 0 1

1 0 0 0 1 0

0 0 1 0 1 0



r

A1(`, 0)

A2(`, 0)

A3(`, 0)

A4(`, 0)

A5(`, 0)

A6(`, 0)


.

We can also interpret this information in terms of random walks. Let X be a random variable. If we start

at X = ak, we consider the probability of being at another state X = aj after r steps. For r = 0, we have

Pr(X = a6) = 1 while Pr(X = aj) = 0 for j 6= 6. For r = 1, we have Pr(X = a2) = 1
2 and Pr(X = a4) = 1

2 ,

while the others have probability 0. After r steps, there are 2r total outcomes, so that the probability of

being in state ak is Ak(`, r)/(2r), which means the probability of ak after (r + 1) steps is

Ak(`, r + 1)

2r+1
=

1

2

(
Ai(`, r) +Aj(`, r)

2r

)

for suitable i and j. Let

M =



0 1
2 0 1

2 0 0

0 1
2 0 0 0 1

2

1
2 0 1

2 0 0 0

0 0 0 1
2 0 1

2

1
2 0 0 0 1

2 0

0 0 1
2 0 1

2 0


be the transition matrix. This matrix has characteristic polynomial

p(x) = 16x6−32x5+24x4−8x3−3x2+4x−1 = 16(x−1)

(
x+

1

2

)(
x− 1

2

)2
(
x− 1 + i

√
7

4

)(
x− 1− i

√
7

4

)
,

and eigenvalues of 1/2, −1/2, 1, and 1±i
√
7

4 . As a side note, the eigenvalue with the largest modulus is 1.

The next largest modulus is | 1±i
√
7

4 | =
√
2
2 . These eigenvalues are important for a bound on the matrix
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entries. This means 

Pr(X = a1(r + 1))

Pr(X = a2(r + 1))

Pr(X = a3(r + 1))

Pr(X = a4(r + 1))

Pr(X = a5(r + 1))

Pr(X = a6(r + 1))


= M ·



Pr(X = a1(r))

Pr(X = a2(r))

Pr(X = a3(r))

Pr(X = a4(r))

Pr(X = a5(r))

Pr(X = a6(r))


.

We use some standard matrices results, combined into the following lemma, which can be found in [21,

p. 516] and [31, p. 7].

Lemma 9.1.5. Let A be an n× n non-negative matrix, with Am > 0 for some m ≥ 1. Suppose the distinct

eigenvalues of A are λ1, λ2, . . ., λt, with λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λt|. If |λ2| = |λ3|, then we stipulate the

multiplicity m2 of λ2 is at least as great as that of λ3 and of any other eigenvalue having the same modulus

as λ2. Then we have

lim
r→∞

Ar = λr1xy
T +O(rs|λ2|r),

where x and y are positive right and left eigenvectors corresponding to λ1 with xT y = 1, and s = m2 − 1.

We then have the following theorem.

Theorem 9.1.6. For k = 1, 2, . . . 6, and for sufficiently large r, we have

Ak(`, r)

2r
=

1

6
+O (ρr) ,

where ρ = |(1 + i
√

7)/4| =
√

2/2.

Proof. First note the transition matrix M is non-negative. Taking powers of M , we have

M4 =



1
4

1
16

1
4

1
16

1
4

1
8

1
4

3
16

3
16

1
8

3
16

1
16

1
16

3
16

3
16

3
16

1
8

1
4

1
4

1
8

3
16

3
16

3
16

1
16

1
16

3
16

1
8

3
16

3
16

1
4

1
8

1
4

1
16

1
4

1
16

1
4


,

so that each entry is positive, meaning M4 > 0. We have λ1 = 1, |λ2| = |(1 + i
√

7)/4| =
√

2/2 and s = 0.

The eigenvectors corresponding to the eigenvalue λ1 = 1 are x = (1, 1, 1, 1, 1, 1)T and y = ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 )T .
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We have xyT is a uniform matrix with 1/6 for each entry. By Lemma 9.1.5, the probability matrix M

converges to a uniform matrix with 1/6 for each entry. This means

Ak(`, r)

2r
=

1

6
+O(ρr),

where ρ = |(1 + i
√

7)/4| =
√

2/2.

This does not prove each possibility is equally likely if we go up to an arbitrary N . We now define

∆k(N) := #{n < N : (w(n), w(n+ 1), w(2n+ 1)) ≡ ak (mod 2)}.

We want to show

lim
N→∞

∆k(N)

N
=

1

6
,

which would mean

(w(n), w(n+ 1), w(2n+ 1)) ≡ ak (mod 2) for k = 1, 2, . . . , 6,

are uniformly distributed across the 6 possibilities.

Theorem 9.1.7. The 6 possible parity outcomes for (w(n), w(n + 1), w(2n + 1)) mod 2 are equally likely

with probability 1/6.

Proof. Fix k, and write N in terms of its binary expansion: N = 2r1 + 2r2 + 2r3 + · · ·+ 2rν . We then take

the interval I = [0, N) and break it up into the following subintervals:

I = [0, 2r1) ∪ [2r1 , 2r1 + 2r2) ∪ . . . ∪ [2r1 + 2r2 + · · ·+ 2rν−1 , 2r1 + 2r2 + 2r3 + · · ·+ 2rν ).

We rewrite each subinterval as

Ij := [2rj (2r1−rj + 2r2−rj + · · ·+ 2rj−1−rj ), 2rj (2r1−rj + 2r2−rj + · · ·+ 2rj−1−rj + 1),

for j ≥ 2, with I1 = [0 · 2r1 , 1 · 2r1), so that we can use Theorem 9.1.6 on each Ij . For simplification, we

define `j := 2r1−rj + 2r2−rj + · · · + 2rj−1−rj for j ≥ 2, and `1 = 0. We apply Theorem 9.1.6, and for j ≥ 1

we have ∣∣∣∣Ak(`j , rj)−
2rj

6

∣∣∣∣ < cj2
rjρrj = cj(

√
2)rj .
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Let c = max cj . We then have

∣∣∣∣∆k(N)− N

6

∣∣∣∣ =

∣∣∣∣∣∣
ν∑
j=1

Ak(`j , rj)−
(

2r1

6
+

2r2

6
+ · · ·+ 2rν

6

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
ν∑
j=1

Ak(`j , rj)−
2rj

6

∣∣∣∣∣∣
≤

ν∑
j=1

∣∣∣∣Ak(`j , rj)−
2rj

6

∣∣∣∣
<

ν∑
j=1

cj(
√

2)rj

< c

ν∑
j=1

(
√

2)rj

< c · (
√

2
r1

+
√

2
r1−1

+ · · ·+ 1)

< c
(
√

2)r1+1 − 1√
2− 1

< c′(
√

2)r1 .

Since N is roughly the size of 2r1 , we have r1 ≈ logN/ log 2, so that (
√

2)r1 = c′′N
1
2 . This implies

∣∣∣∣∆k(N)− N

6

∣∣∣∣ < CN
1
2 ,

for some C. Thus for any N , we have

∆k(N)

N
− 1

6
= O(N−

1
2 ).

Note we can use ∆k(N) to count the number of n < N such that (w(n), w(n+ 1)) is congruent to one of

the six outcomes. We have

#{n < N : (w(n), w(n+ 1)) ≡ (0, 0) (mod 2)} = ∆1(N),

#{n < N : (w(n), w(n+ 1)) ≡ (0, 1) (mod 2)} = ∆2(N) + ∆3(N),

#{n < N : (w(n), w(n+ 1)) ≡ (1, 0) (mod 2)} = ∆4(N) + ∆5(N),

#{n < N : (w(n), w(n+ 1)) ≡ (1, 1) (mod 2)} = ∆6(N).

Since ∆k(N)/N is roughly 1/6, we can use the above results to obtain the probabilities listed in Theorem
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9.1.1. This also proves Theorem 9.1.1.

Recall that Theorem 9.1.1 states the probability of (w(n), w(n + 1)) = (1, 0) mod 2, and (w(n), w(n +

1)) = (0, 1) (mod 2) is 1/3, while the probability of (w(n), w(n+1)) = (0, 0) (mod 2) and (w(n), w(n+1)) =

(1, 1) (mod 2) is 1/6.

We can also prove Theorem 9.1.1 via direct calculations.

Proof. We consider all consecutive pairs in arithmetic progressions of 8. We have

w(8n) = w(n),

w(8n+ 1) = w(4n+ 1) + 2w(n) = s(3n+ 1) + 3w(n),

w(8n+ 2) = w(4n+ 1) = s(3n+ 1) + w(3n).

We see that the parity of these three terms depend only on the parity of w(n). We have w(8n) and w(8n+1)

will have opposite parity, while w(8n+ 1) and w(8n+ 2) will have the same parity. We also have

w(8n+ 3) = w(4n+ 1) + w(2n+ 1)− w(n) = w(2n+ 1) + s(3n+ 1),

w(8n+ 4) = w(2n+ 1),

w(8n+ 5) = w(4n+ 3) + w(2n+ 1)− w(n+ 1) = w(2n+ 1) + s(3n+ 2),

so that these terms depend only on the parity of w(2n+ 1). So w(8n+ 3) and w(8n+ 4) will have opposite

parity, as will w(8n+ 4) and (8n+ 5). We then have

w(8n+ 6) = w(4n+ 3) = w(n+ 1) + s(3n+ 2),

w(8n+ 7) = w(4n+ 3) + 2w(n+ 1) = s(3n+ 2) + 3w(n+ 1),

w(8n+ 8) = w(n+ 1).

These terms only depend on the parity of w(n+ 1), and w(8n+ 6) and w(8n+ 7) will have the same party,

while w(8n+ 7) and w(8n+ 8) will have opposite parity.

By Lemma 9.1.2, there are only 6 possible cases for the parity of w(n), w(n+ 1), and w(2n+ 1), and by

Theorem 9.1.7 these six outcomes are all equally likely. Going through all six cases of possible parities, we

can then write out all of the possible strings modulo 2, count them, and compute their probability. These

calculations are by brute force of case analysis, and we omit these details. In conclusion, there are 48 total

possibilities. The ordered pairs (0, 0) and (1, 1) occur 8 times, so that their probability is 1/6, and (0, 1) and
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(1, 0) occur 16 times, so that their probability is 1/3.

We can condense these pairs into strings of 9. The 6 possible values of (w(8n), w(8n+ 1), . . . , w(8n+ 8))

are

011010110, 011101001, 011010001,

100101110, 100010110, 100101001.

We can see that there are at most 3 1’s or 3 0’s in a row.

9.2 Three or Four Consecutive Terms Modulo 2

Using the same information, we can also say something about the distribution of triple of consecutive terms

modulo 2.

Corollary 9.2.1. The set of {(w(n), w(n + 1), w(n + 2))} is not uniformly distributed among the ordered

triples modulo 2. Furthermore, the probability of (0, 0, 0) and (1, 1, 1) are each 1/24, (0, 0, 1), (1, 0, 0),

(0, 1, 1), and (1, 1, 0) are each 1/8, (0, 1, 0) and (1, 0, 1) are each 5/24.

Proof. In the previous proof, we gave relationships for the parity of terms in arithmetic progressions of 8.

We take this previous information in triples instead of pairs, and note that w(8n+9) = 3w(n+1)+s(3n+4),

so that the parity depends on w(n+ 1) and w(8n+ 8) and w(8n+ 9) will have opposite parity. We can then

do calculations of all 6 cases by brute force. We omit these details here.

Again, there are 48 total possible outcomes. The probability of (0, 0, 0) or (1, 1, 1) is 1/24, the probability

of (0, 0, 1), (1, 0, 0), (1, 1, 0), and (0, 1, 1) is 1/8, and the probability of (0, 1, 0) and (1, 0, 1) is 5/24.

Corollary 9.2.2. Four consecutive terms are not uniformly distributed across the four-tuples modulo 2, with

(0, 0, 0, 0) and (1, 1, 1, 1) never occurring.

Proof. It is clear to see from the proof of Theorem 9.1.1 and the 6 possible strings, that (0, 0, 0, 0) and

(1, 1, 1, 1) will never occur. Consequently, four consecutive terms will never be uniformly distributed across

all possible four-tuples modulo 2.
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Chapter 10

Sums

Summing across a row in the diatomic array, Stern [34] observed and proved the sum of the values in the

r-th row is 3r + 1. We rewrite this as the following lemma.

Lemma 10.0.3. For k ∈ N ∪ {0},
2k+1−1∑
n=2k

s(n) = 3k. (10.1)

D.H. Lehmer [24] also mentions this property in his paper, but only in summary of Stern’s results from

his 1858 paper.

Upon examining a list of values for w(n), it was observed w(n) followed a similar pattern in summing to

powers of 3. This led to the following theorem.

Theorem 10.0.4. For k ∈ N ∪ {0},
2k+1−1∑
n=2k

w(n) = 3k.

Proof. Let Tk :=
∑2k+1−1
n=2k w(n). Then separating the summands over even and odd values, using the

recurrence relation for s(2n+ 1), then re-indexing, and separating into two sums, we have

2Tk =

2k+1−1∑
n=2k

s(3n) =

2k+1−1∑
n=2k
n even

s(3n) +

2k+1−1∑
n=2k

n odd

s(3n) =

2k−1∑
`=2k−1

s(3`) +

2k−1∑
`=2k−1

s(3(2`+ 1))

=

2k−1∑
`=2k−1

s(3`) + s(3`+ 1) + s(3`+ 2) =

3·2k−1∑
`=3·2k−1

s(`)

=

2k+1∑
`=3·2k−1

s(`) +

3·2k−1∑
`=2k+1+1

s(`) (10.2)

=

3·2k−1∑
`=2k

s(`) +

2k+2−1∑
`=3·2k+1

s(`) (10.3)

by using the symmetry of s(n). Then adding (10.2) and (10.3) and rearranging the sums in a convenient
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way, we have

4Tk = 2Tk + 2Tk =

2k+1∑
`=3·2k−1

s(`) +

3·2k−1∑
`=2k+1+1

s(`) +

3·2k−1∑
`=2k

s(`) +

2k+2−1∑
`=3·2k+1

s(`)

=

3·2k−1∑
`=2k

s(`) + s(3 · 2k−1) +

2k+2−1∑
`=3·2k+1

s(`)

=

2k+2−1∑
`=2k

s(`) =

2k+1−1∑
`=2k

s(`) +

2k+2−1∑
`=2k+1

s(`)

= 3k + 3k+1 = 4 · 3k,

which then implies the desired result.

Remark 10. We define Σ∗ to indicate that only half of the first and last values are taken, meaning

b∑∗

n=a

f(n) =

b∑
n=a

f(n)− 1

2
f(a)− 1

2
f(b).

We then have
2k+1∑∗

n=2k

s(n) =

2k+1∑∗

n=2k

w(n) = 3k. (10.4)

10.1 Order of Magnitude

Since the sums over intervals of powers of 2 are the same for both the Stern sequence and w(n), we should

expect the average values of the sequences to have the same magnitude. The Stern sequence has average

order of Nβ−1, where β = log2 3, and w(n) indeed has the same order of magnitude for the average value.

To see this, let W (N) :=
∑N
n=0 w(n). We have

W (2r+1 − 1) =

2r+1−1∑
n=0

w(n) =

r∑
j=0

2j+1−1∑
n=2j

w(n) =

r∑
j=0

3j =
3r+1 − 1

2
.

Noting that W (2r+1) = W (2r+1 − 1) + w(2r+1) = 3r+1−1
2 + 1 = 3r+1+1

2 , we have for 2r ≤ N < 2r+1,

3r + 1

2
= W (2r) ≤W (N) ≤W (2r+1 − 1) =

3r+1 − 1

2
.

Then since (3r+1)/2 > 3r+1/6 > Nβ/6, and (3r+1−1)/2 < (Nβ−1)/2 < Nβ/2, we have W (N)/N � Nβ−1.
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10.2 Sums of s(n)− w(n)

The nice equality in (10.4) leads one to consider, what happens to the quantity

2k(1+t)∑∗

n=2k

(s(n)− w(n)),

as t changes from 0 to 1. Letting k vary, and looking at the graphs given in Figure 10.1, we see that as k

grows larger, the graphs seem to converge to the same shape. The graphs have been normalized. This leads

k = 3 k = 4

k = 5 k = 6

k = 8 k = 10

Figure 10.1:

2k(1+t)∑∗

n=2k

(s(n)− w(n)) for k = 3, 4, 5, 8, 10

us to make the following conjecture.
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Conjecture 10.2.1. There exists a continuous function Φ(t) on [0, 1], such that

lim
k→∞

3−k
2k(1+t)∑∗

n=2k

(s(n)− w(n)) = Φ(t).

Reznick [29] showed that for t in [0, 1], the function defined as

h(t) := lim
k→∞

3−k
2k(1+t)∑∗

n=2k

s(n),

extends to a continuous, strictly increasing functionH(t). This continuous extensionH(t) is not differentiable

everywhere. The derivative H ′(t) exists and equals 0 for dyadic rationals, but H ′(t) does not exist for

t = m/(3 · 2r) with gcd(3,m) = 1. Therefore, it is very likely that Φ(t) is not differentiable everywhere.

A few remaining questions are then, what is Φ(t) and how do you find it?
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Chapter 11

Polynomial Analogue

The Stern Polynomial analogue, as defined by Klavžar, Milutinović, and Petr [22], satisfies the recurrences

S(0, x) = 0, S(1, x) = 1,

S(2n, x) = xS(n, x), S(2n+ 1, x) = S(n, x) + S(n+ 1, x).

(11.1)

The first few polynomials are given as:

0, 1, x, 1 + x, x2, 1 + 2x, x(1 + x), 1 + x+ x2, x3, 1 + 2x+ x2, . . . .

Note that we recover the original Stern sequence by letting x = 1, or in other words, S(n, 1) = s(n). The

Stern polynomials also have the property S(n, 2) = n. Also note that (1+x) divides S(3n, x). The generating

function for S(n, x) is
∞∑
n=0

S(n, x)tn = t

∞∏
n=0

(
1 + xt2

n

+ t2
n+1
)
.

If we let x = −1, then we have a rephrasing of the product we saw in Chapter 5 in (5.3):

t

∞∏
n=0

(
1 +−t2

n

+ t2
n+1
)

= t(1− t+ t3 − t4 + t6 − t7 + t9 − · · · ) = t− t2 + t4 − t5 + t7 − t8 + t10 − · · · .

This implies S(3n,−1) = 0, and so equivalently, 1 + x must divide S(3n, x).

11.1 Definition

Since 1 + x divides S(3n, x) for all n, it is then natural to define the polynomial analogue of w(n) to be

ŵ(n, x) :=
S(3n, x)

1 + x
.
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Then the original sequence w(n) is also recovered since ŵ(n, 1) = s(3n)/2 = w(n). Using the definition of

this polynomial analogue, we generate the polynomials given in Table 11.1.

Table 11.1: Table for ŵ(n, x)

n ŵ(n, x) n ŵ(n, x) n ŵ(n, x)
0 0 6 x+ x2 12 x2 + x3

1 1 7 1 + 3x 13 1 + 2x+ 2x2

2 x 8 x3 14 x+ 3x2

3 1 + x 9 1 + 2x+ x2 15 1 + 3x+ 2x2

4 x2 10 x+ x3 16 x4

5 1 + x2 11 1 + x+ x3 17 1 + 2x+ 3x2

11.2 Recurrences

Using (11.1), we have

ŵ(2n, x) =
S(3 · 2n, x)

(1 + x)
= xn · S(3, x)

(1 + x)
= xn.

More generally, we also have

ŵ(2n · k, x) =
S(2n · 3k, x)

(1 + x)
= xn · S(3k, x)

(1 + x)
= xn · ŵ(k, x). (11.2)

Using the definition for the polynomial analogue of w(n), we have

ŵ(2n± 1, x) =
S(3n± 1, x) + S(3n± 2, x)

1 + x
. (11.3)

Similarly, we also find

ŵ(4n± 1, x) =
S(12n± 3, x)

1 + x
=
S(3n, x) + S(3n± 1, x) + xS(3n± 1, x)

1 + x
(11.4)

= ŵ(n, x) + S(3n± 1, x),

and

ŵ(4n± 3, x) =
S(12n± 9, x)

1 + x
=
S(3n± 2, x) + xS(3n± 2, x) + S(3n± 3, x)

1 + x

= ŵ(n+ 1, x) + S(3n± 2, x).
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Using the definition for ŵ(8n± 1, x) and (11.4), we have

ŵ(8n± 1, x) = ŵ(4n± 1, x) + 2x · ŵ(n, x). (11.5)

Rearranging (11.4) to obtain S(3n± 1, x) = ŵ(4n± 1, x)− ŵ(n, x), and then substituting this in after using

the definition in ŵ(8n± 3, x), we have

ŵ(8n± 3, x) = x · ŵ(4n± 1, x) + ŵ(2n± 1, x)− x · ŵ(n, x). (11.6)

To obtain recurrences for arithmetic progressions modulo 16, we replace n by 2n or 2n ± 1 in (11.5) and

(11.6). We have

ŵ(16n± 1, x) = ŵ(8n± 1, x) + 2x2 · ŵ(n, x)

= ŵ(4n± 1, x) + 2x(1 + x) · ŵ(n, x),

ŵ(16n± 3, x) = (x+ 1)ŵ(4n± 1, x) + x2 · ŵ(n, x), (11.7)

ŵ(16n± 5, x) = (x2 + 1)ŵ(4n± 1, x) + (x− 1)ŵ(2n± 1, x)− x2 · ŵ(n, x), (11.8)

ŵ(16n± 7, x) = ŵ(8n± 1, x) + 2x · ŵ(2n± 1, x).

These recurrence relations are similar to the ones for the original sequence, and when x = 1, we recover the

original recurrence relations for w(n). We also define the following notation.

Definition 11.2.1. Let Gk(x) :=
∑k
j=1 x

j .

We can generalize Theorem 7.1.1 to obtain the following theorem.

Theorem 11.2.2. For all natural numbers n and k > 2,

ŵ(2kn± 1, x) = ŵ(2k−1n± 1, x) + 2xk−2ŵ(n, x) = ŵ(4n± 1, x) + 2ŵ(n, x)Gk−2(x).

Proof. In (11.5), replace n with 2k−3n and then use (11.2) to obtain the first equality of the theorem. To

obtain the second part, simply apply and reiterate the first equality of the theorem.

In a similar manner we also obtain the following theorems.
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Theorem 11.2.3. For all natural numbers n and k ≥ 4,

ŵ(2kn± 3, x) = (x+ 1)ŵ(2k−2n± 1, x) + 2Gk−4(x) · ŵ(n, x) + xk−2 + xk−2ŵ(n, x) (11.9)

= (x+ 1)ŵ(4n± 1, x) + 2(x+ 1)Gk−4(x)ŵ(n, x) + xk−2ŵ(n, x). (11.10)

Proof. In (11.7), replace n with 2k−4n and then use Theorem 11.2.2 and (11.2) to obtain (11.9). To obtain

(11.10), simply apply and reiterate Theorem 11.2.2.

Theorem 11.2.4. For all natural numbers n and k ≥ 5,

ŵ(2kn± 5, x) = (x2 + 1)ŵ(2k−2n± 1, x) + (x− 1)ŵ(2k−3n± 1, x)− xk−2ŵ(n, x) (11.11)

= x(x+ 1)ŵ(4n± 1, x) + (2x(x+ 1)Gk−5(x) + 2(x2 + 1)xk−4 − xk−2)ŵ(n, x). (11.12)

Proof. In (11.8), replace n with 2k−4n and then use Theorem 11.2.2 and (11.2) to obtain (11.11). To obtain

(11.12), simply apply and reiterate Theorem 11.2.2.

Ideally, we would like to generalize these recurrences and find a reduction formula for the polynomial

analogue similar to Theorem 7.2.2.

11.3 Zeros of the Polynomial Analogues

We can consider ŵ(n, x) as a sequence of polynomials. What are the zeros of this sequence of polynomials?

First note, though, that since ŵ(2kn, x) = xkŵ(n, x) by (11.2), the zeros for these polynomials are the zeros

of ŵ(n, x) and x = 0 with multiplicity k. Thus, the even polynomials have been omitted from Table 11.2.

We organize this information into a graph. Figures 11.1 and 11.2 show the zeros of ŵ(n, x), for various

values of n. The first graph shows the zeros of the polynomial analogue up to n = 210, while the second

graph shows the zeros up to 215. These graphs are very similar to the graph of the zeros of S(n, x). Figure

11.3 plots the zeros of S(n, x) up to n = 211.

11.4 Other Properties

When looking at the table of polynomials, we see a few interesting patterns. First, when evaluated at x = 0,

ŵ(n, 0) becomes a sequence of zeros and ones, more specifically, the repeated sequence 0, 1. Also, similar to

the Stern polynomials, we have ŵ(n, 2) = n.
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Table 11.2: Zeros of ŵ(n, x)

n ŵ(n, x) zeros
0 0 0
1 1 none
3 x+ 1 −1
5 x2 + 1 ±i
7 3x+ 1 −1/3
9 x2 + 2x+ 1 −1,−1
11 x3 + x+ 1 −0.682328, 0.341164± 1.16154i
13 2x2 + 2x+ 1 −0.5± 0.5i
15 2x2 + 3x+ 1 −1,−0.5
17 3x2 + 2x+ 1 −0.33333± 0.471405i
19 x3 + 2x2 + x+ 1 −1.75488, −0.122561± 0.744862i
21 x4 + x2 + 1 ±0.5± 0.866025i
23 x3 + 2x2 + 3x+ 1 −0.43016, −0.78492± 1.30714i
25 4x2 + 4x+ 1 −0.5, −0.5
27 2x3 + x2 + 3x+ 1 −0.345627, −0.0771863± 1.20029i
29 3x2 + 4x+ 1 −1, −0.333333
31 2x3 + 2x2 + 3x+ 1 −0.396608, −0.301696± 1.08151i

Theorem 11.4.1. For all natural numbers n, ŵ(n, 2) = n.

Proof. This follows directly from the property for the polynomial analogue for the Stern sequence:

ŵ(n, 2) =
S(3n, 2)

3
=

3n

3
= n.

It is interesting that ŵ(n, x) can be written as a sum of previous polynomials, and the indices add up

to n. For example, ŵ(5, x) = ŵ(1, x) + ŵ(4, x) and ŵ(9, x) = ŵ(6, x) + ŵ(3, x). For some n, there is

more than one way to write it as a sum of previous polynomials. We can ask, in how many ways can each

polynomial be written as a sum of the previous polynomials? If we associate each irreducible polynomial

with its corresponding n value, then we can also think of these sums as partitions of n. This type of partition

is given in Table 11.3. Can these partitions relate to w(n) at all? Is there a known partition function which

corresponds to counting these partitions of n?
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Figure 11.1: Zeros of ŵ(n, x) up to n = 210 Figure 11.2: Zeros of ŵ(n, x) up to n = 215

Figure 11.3: Zeros of S(n, x) up to n = 211
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Table 11.3: Ways to write ŵ(n, x) as a sum of previous ŵ(n, x)

n ŵ(n, x) ways to write n # of ways to write ŵ(n, x)
0 0 0 1
1 1 1 1
2 x 2 1
3 x+ 1 2+1 1
4 x2 4 1
5 x2 + 1 4+1 1
6 x2 + x 4+2 1
7 3x+ 1 3+2+2 2

2+2+2+1
8 x3 8 1
9 x2 + 2x+ 1 6+3

5+2+2
4+3+2 4

4+2+2+1
10 x3 + x 8+2 1
11 x3 + x+ 1 10+1 2

8+2+1
12 x3 + x2 8+4 1
13 2x2 + 2x+ 1 9+4

6+6+1
6+5+2

5+4+2+2 6
4+4+3+2

4+4+2+2+1
14 3x2 + x 6+4+4 2

4+4+4+2
15 2x2 + 3x+ 1 13+2

9+4+2
7+4+4
6+6+3

6+6+2+1 9
6+5+2+2

6+4+2+2+1
5+4+2+2+2

4+4+2+2+2+1
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Chapter 12

Future Directions

We highlight the open questions brought up in this thesis for future directions of research.

12.1 For the Stern Sequence

There are still many unanswered questions involving the Stern sequence, but we highlight questions intro-

duced in this thesis.

We found recurrences and formulas for the second and third largest values in a row of the diatomic array.

What are the formulas for the 4th largest value, or even the m-th largest value? We also made the conjecture

that the m-th largest value satisfies the Fibonacci recurrence

Lm(r) = Lm(r − 1) + Lm(r − 2),

for all r ≥ 4m− 2. Is there an easy way to prove this? Proving the second and third largest values in a row

satisfy a Fibonacci recurrence involved investigating numerous cases and seemed cumbersome. For a general

case, the induction might be more complicated.

Related to this conjecture, we also discuss the possibility that another recurrence relation holds for

r ≥ 4(m− 1):

Lm(r) = Lm−1 − Fr−(4m−5).

If this is true, then this implies the gaps between values of the Stern sequence, when ranked according to size,

are Fr−(4m−5). This conjecture, if proved, would be useful in proving the conjecture that the normalized

distribution of gaps is φ−(4k−3) for k ≥ 2.

Currently there is more known about the distribution of gaps for the Stern sequence than the distribution

of values. The distribution of values seems to converge to a limiting function, but what is this function?

How do we find it?

In Chapter 3, we discussed finding bounds for the row in which a value will appear in the diatomic array. If
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v(m) is the counting function which gives the first row in which m will appear and f(x) = [ln(
√

5x)/ lnφ]−2,

we conjectured that for all m,

f(m) ≤ v(m) ≤ f(m) + 3.

Again, this conjecture has a consequence for a bound on the smallest possible sum of continuants for a

continued fraction, and this might prove useful in the area of continued fractions.

In addition to finding bounds for the first appearance of a value in a row of the diatomic array, what

about finding asymptotics which give the second appearance of a value? Are there asymptotics that predict

in which rows the new appearances of a value will occur?

12.2 For w(n)

There is still much to understand for w(n). For example, a combinatorial interpretation for w(n) independent

of s(n) is still unknown. The combinatorial interpretation in terms of s(n) for w(n) has a proof using the

generating function, but what about a bijective proof? Connected to the combinatorial interpretation is the

generating function. Once we find a combinatorial interpretation, will this lead to a nice closed formula for

the generating function?

In Chapter 9, we discussed certain patterns for consecutive terms modulo 2. We could take this a step

further. Is w(n) eventually periodic modulo 2? If w(n) is periodic modulo 2, then this will have implications

for finding a combinatorial interpretation and the generating function.

We also considered the largest value of w(n) in a row. What about the second largest value? These

probably depend on the 4th, 5th, and 6th largest values of the Stern sequence, but is there an explicit

formula for these values?

In Chapter 10, we considered the sum of w(n) for n between powers of 2. But what is the sum of values

across a row in the triangular array? We also conjecture there exists a continuous function Φ(t) on [0, 1]

such that

lim
k→∞

3−k
2k(1+t)∑∗

n=2k

(s(n)− w(n)) = Φ(t).

How do we find this limiting function? We can also investigate sums of higher moments. For example, how

does the sum of (s(n) − w(n))2 over powers of 2 behave? Taking an initial glance, we expect each term in

the expansion of (s(n) − w(n))2 to satisfy a recurrence, since sums of s(n)2 satisfy a recurrence. What is

the recurrence relation for the entire sum?

The sequence s(n)/s(n + 1) also provides an explicit enumeration of the positive rationals. While not
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investigated in this dissertation, we ask what values appear and do not appear in considering the sequence

w(n)/w(n+ 1)?

12.3 Similar Sequences

We can construct sequences similar to w(n) from the Stern sequence. For example, s(5n) has the same parity

as s(n), and so the sequence given by s(5n) ± s(n) is always even. In fact, we can consider more general

sequences of the form s((2k + 1)n) ± s(n), and this sequence will always be even, as long as 2k + 1 is not

a multiple of 3. Does this family of sequences have any interesting properties as well? Will these sequences

have independent recurrences? Will they inherit any properties from the Stern sequence? How does this

family of sequences behave?
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