Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Apr 03 2014 20:45:37
%S 4,18,172,866,7326,35042,291982,1387224,11520638,54650290,453546794,
%T 2150825840,17847352698,84630769202,702236000852,3329901981396,
%U 27630151135038,131017792653932,1087129854047788,5154993778435048
%N Number of nX3 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4
%C Column 3 of A240321
%H R. H. Hardin, <a href="/A240317/b240317.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 63*a(n-2) -1109*a(n-4) +7143*a(n-6) -395*a(n-8) -201246*a(n-10) +762860*a(n-12) +347011*a(n-14) -7366154*a(n-16) +11744674*a(n-18) +3758987*a(n-20) +10095295*a(n-22) -126415852*a(n-24) +204390541*a(n-26) -65238786*a(n-28) -59211883*a(n-30) -114625640*a(n-32) +381020006*a(n-34) -342073760*a(n-36) +16725276*a(n-38) +181283664*a(n-40) -110895680*a(n-42) +16492080*a(n-44) +1175136*a(n-46) +390464*a(n-48)
%e Some solutions for n=4
%e ..1..1..3....1..1..1....1..1..1....3..3..3....3..3..1....3..3..1....3..3..3
%e ..1..0..0....1..2..0....1..0..0....3..2..2....3..2..1....3..0..0....3..2..0
%e ..1..2..0....1..0..2....1..0..2....1..2..2....3..0..3....1..2..2....1..0..2
%e ..3..3..2....3..0..0....3..0..2....3..0..3....1..0..2....3..2..2....3..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 03 2014