The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240239 a(n) is one-half of the integer approximated by A135952(n)/A240238(n). 2

%I #6 Apr 11 2014 15:11:00

%S 1,1,3,2,1,1,2,1,1,3,2,1,1,9,1,1,3,1,1,1,9,3,1,6,1,1,1,1,1,1,1,1,3,1,

%T 2,1,1,1,30,3,2,3,39,1,1,1,6,3,34,1,1,2,1,1,1,1,1,3,1,9,1,1,1,2,1,37,

%U 3,9,6,1,8,1,1,2,1,3,2,10,1,1,11,19,3,1,1,1,1,2,1,1,7,1,47,3,3,1,1,2,1,1

%N a(n) is one-half of the integer approximated by A135952(n)/A240238(n).

%C The integer approximation can be made exact by first adding 1 to A135952(n) where a(n) is odd, or subtracting 1 from A135952(n) where a(n) is even, before dividing by A240238(n).

%C Conjecture: a(n) never ends with the digit 5.

%H Hans Havermann, <a href="/A240239/b240239.txt">Table of n, a(n) for n = 1..5000</a>

%H Hans Havermann, <a href="http://gladhoboexpress.blogspot.ca/2014/04/magic-multipliers.html">Magic multipliers</a>

%e (A135952(1)+1)/A240238(1) = (37+1)/19 = 2, so a(1) is 2/2 = 1.

%e (A135952(2)+1)/A240238(2) = (73+1)/37 = 2, so a(2) is 2/2 = 1.

%e (A135952(3)+1)/A240238(3) = (113+1)/19 = 6, so a(3) is 6/2 = 3.

%e (A135952(4)-1)/A240238(4) = (149-1)/37 = 4, so a(4) is 4/2 = 2.

%Y Cf. A135952, A240238.

%K nonn

%O 1,3

%A _Hans Havermann_, Apr 02 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 00:17 EST 2024. Contains 370499 sequences. (Running on oeis4.)