login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions p of n such that median(p) > multiplicity(max(p)).
5

%I #4 Apr 12 2014 16:23:49

%S 0,0,1,2,2,3,5,8,11,16,23,30,42,57,76,102,134,177,227,298,380,488,619,

%T 785,988,1244,1551,1936,2401,2972,3661,4508,5518,6747,8224,10000,

%U 12118,14671,17696,21315,25612,30719,36752,43916,52341,62304,74010,87785

%N Number of partitions p of n such that median(p) > multiplicity(max(p)).

%F a(n) = A240211(n) - A240209(n) for n >= 0.

%F a(n) + A240207(n) + A240209 = A000041(n) for n >= 0.

%e a(6) counts these 5 partitions: 6, 51, 42, 33, 321.

%t z = 60; f[n_] := f[n] = IntegerPartitions[n];

%t t1 = Table[Count[f[n], p_ /; Median[p] < Count[p, Max[p]]], {n, 0, z}] (* A240207 *)

%t t2 = Table[Count[f[n], p_ /; Median[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240208 *)

%t t3 = Table[Count[f[n], p_ /; Median[p] == Count[p, Max[p]]], {n, 0, z}] (* A240209 *)

%t t4 = Table[Count[f[n], p_ /; Median[p] > Count[p, Max[p]]], {n, 0, z}] (* A240210 *)

%t t5 = Table[Count[f[n], p_ /; Median[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240211 *)

%Y Cf. A240207, A240208, A240209, A240211, A000041.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Apr 03 2014