%I #5 Apr 09 2014 21:52:51
%S 0,0,1,1,2,3,6,7,12,16,24,32,47,60,84,110,148,191,254,323,423,535,687,
%T 864,1100,1371,1726,2141,2669,3290,4075,4990,6136,7481,9137,11087,
%U 13471,16264,19659,23641,28438,34060,40801,48676,58074,69049,82064,97246
%N Number of partitions of n such that the least part is less than its multiplicity.
%F a(n) = A188216(n) - A096403(n), for n >= 0.
%e a(8) counts these 12 partitions: 611, 5111, 4211, 41111, 3311, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111.
%t z = 60; f[n_] := f[n] = IntegerPartitions[n];
%t Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}](* A240175 *)
%t Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}](* A188216 *)
%t Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}](* A096403 *)
%t Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *)
%t Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)
%Y Cf. A188216, A096403, A240176, A240177.
%K nonn,easy
%O 0,5
%A _Clark Kimberling_, Apr 02 2014