login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of 2n/v(n)^2, where v(1) = 0, v(2) = 1, and v(n) = v(n-1)/(n-2) + v(n-2) for n >= 3; limit of 2n/v(n)^2 is Pi.
2

%I #21 Apr 08 2014 06:06:43

%S 1,4,6,32,40,256,896,4096,4608,65536,360448,524288,1703936,4194304,

%T 10485760,134217728,142606336,4294967296,40802189312,34359738368,

%U 180388626432,274877906944,3161095929856,4398046511104,13743895347200,70368744177664,949978046398464

%N Numerator of 2n/v(n)^2, where v(1) = 0, v(2) = 1, and v(n) = v(n-1)/(n-2) + v(n-2) for n >= 3; limit of 2n/v(n)^2 is Pi.

%C Pi = limit of A239224(n)/A239225(n), attributed to B. Cloitre in Finch.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 19.

%H Clark Kimberling, <a href="/A239224/b239224.txt">Table of n, a(n) for n = 1..1000</a>

%e Let w(n) = 2n/v(n)^2. The first 7 values of w are 4, 6, 32/9, 40/9, 256/75, 896/225, 4096/1225, with approximations 4., 6., 3.55556, 4.44444, 3.41333, 3.98222, 3.34367; w(1000) = 3.14316..., w(10000) = 3.14175..., w(20000) = 3.14167... .

%p v:= proc(n) v(n):= `if`(n<3, n-1, v(n-1)/(n-2)+v(n-2)) end:

%p a:= n-> numer(2*n/v(n)^2):

%p seq(a(n), n=2..30); # _Alois P. Heinz_, Mar 12 2014

%t z = 40; v[1] = 0; v[2] = 1; v[n_] := v[n] = v[n - 1]/(n - 2) + v[n - 2]

%t u = Join[{1}, Table[2 n/v[n]^2, {n, 2, z}]];

%t t1 = Numerator[u] (* A239224 *)

%t t2 = Denominator[u] (* A239225 *)

%Y Cf. A000796, A239225.

%K nonn,frac,easy

%O 1,2

%A _Clark Kimberling_, Mar 12 2014