The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239194 T(n,k)=Number of nXk 0..4 arrays with no element equal to the sum of elements to its left or the sum of the elements above it, modulo 5 8

%I

%S 4,12,12,40,120,40,128,1276,1276,128,416,13128,43648,13128,416,1344,

%T 136684,1436268,1436268,136684,1344,4352,1416192,47885992,151351888,

%U 47885992,1416192,4352,14080,14700364,1588084496,16147220164,16147220164

%N T(n,k)=Number of nXk 0..4 arrays with no element equal to the sum of elements to its left or the sum of the elements above it, modulo 5

%C Table starts

%C .....4.........12.............40.................128.....................416

%C ....12........120...........1276...............13128..................136684

%C ....40.......1276..........43648.............1436268................47885992

%C ...128......13128........1436268...........151351888.............16147220164

%C ...416.....136684.......47885992.........16147220164...........5513429365240

%C ..1344....1416192.....1588084496.......1713928533440........1872818978720764

%C ..4352...14700364....52771184780.....182266933113924......637384123700005952

%C .14080..152485288..1752250223616...19369216287602148...216766214761274933980

%C .45568.1582134540.58199143332448.2058887399348279616.73739429314877219107168

%H R. H. Hardin, <a href="/A239194/b239194.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) +4*a(n-2)

%F k=2: [order 7]

%F k=3: [order 32]

%e Some solutions for n=3 k=4

%e ..1..2..4..3....1..2..2..1....1..2..2..3....1..2..1..1....1..2..2..3

%e ..3..1..3..4....4..1..4..2....2..4..3..2....2..0..0..4....3..1..0..2

%e ..2..4..3..3....2..4..0..0....2..0..3..3....1..3..3..1....2..4..4..3

%Y Column 1 is A087206

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Mar 11 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 17:00 EST 2023. Contains 360044 sequences. (Running on oeis4.)