%I
%S 4,12,12,40,120,40,128,1276,1276,128,416,13128,43648,13128,416,1344,
%T 136684,1436268,1436268,136684,1344,4352,1416192,47885992,151351888,
%U 47885992,1416192,4352,14080,14700364,1588084496,16147220164,16147220164
%N T(n,k)=Number of nXk 0..4 arrays with no element equal to the sum of elements to its left or the sum of the elements above it, modulo 5
%C Table starts
%C .....4.........12.............40.................128.....................416
%C ....12........120...........1276...............13128..................136684
%C ....40.......1276..........43648.............1436268................47885992
%C ...128......13128........1436268...........151351888.............16147220164
%C ...416.....136684.......47885992.........16147220164...........5513429365240
%C ..1344....1416192.....1588084496.......1713928533440........1872818978720764
%C ..4352...14700364....52771184780.....182266933113924......637384123700005952
%C .14080..152485288..1752250223616...19369216287602148...216766214761274933980
%C .45568.1582134540.58199143332448.2058887399348279616.73739429314877219107168
%H R. H. Hardin, <a href="/A239194/b239194.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) +4*a(n-2)
%F k=2: [order 7]
%F k=3: [order 32]
%e Some solutions for n=3 k=4
%e ..1..2..4..3....1..2..2..1....1..2..2..3....1..2..1..1....1..2..2..3
%e ..3..1..3..4....4..1..4..2....2..4..3..2....2..0..0..4....3..1..0..2
%e ..2..4..3..3....2..4..0..0....2..0..3..3....1..3..3..1....2..4..4..3
%Y Column 1 is A087206
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 11 2014
|