%I
%S 2,3,5,6,8,13,21,24,26,28,35,45,48,50,55,76,83,89,93,96,100,101,115,
%T 120,138,140,148,149,181,191,195,203,206,209,215,230,258,259,281,285,
%U 294,301,309,323,330,349,358,373,380,386,393,395,423,428,433,474,495
%N Numbers k such that (k1)*k^2 + 1 and k^2 + (k1) are both prime.
%C Numbers k such that (k^3  k^2 + 1)*(k^2 + k  1) is semiprime.
%C Intersection of A045546 and A111501.
%C Primes in this sequence: 2, 3, 5, 13, 83, 89, 101, 149, 181, 191, ...
%H Daniel Starodubtsev, <a href="/A239135/b239135.txt">Table of n, a(n) for n = 1..10000</a>
%e 2 is in this sequence because (21)*2^2+1=5 and 2^2+(21)=5 are both prime.
%t Select[Range[600],PrimeQ[#^2+#1]&&PrimeQ[#^2(#1)+1]&] (* _Farideh Firoozbakht_, Mar 17 2014 *)
%o (MAGMA) k := 1;
%o for n in [1..10000] do
%o if IsPrime(k*(n  1)*n^2 + 1) and IsPrime(k*n^2 + n  1) then
%o n;
%o end if;
%o end for;
%Y Cf. A239115.
%K nonn
%O 1,1
%A _Ilya Lopatin_ following a suggestion from _JuriStepan Gerasimov_, Mar 15 2014
