The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239131 A sequence with period length 54; the companion of x(n) = A239130(n), the smallest positive solution of 3^4*x - 2^n*y = 1 for n >= 0. 2

%I

%S 80,40,20,10,5,43,62,31,56,28,14,7,44,22,11,46,23,52,26,13,47,64,32,

%T 16,8,4,2,1,41,61,71,76,38,19,50,25,53,67,74,37,59,70,35,58,29,55,68,

%U 34,17,49,65,73,77,79,80,40,20,10,5,43,62,31,56,28,14,7,44

%N A sequence with period length 54; the companion of x(n) = A239130(n), the smallest positive solution of 3^4*x - 2^n*y = 1 for n >= 0.

%C The first 54 = phi(3^4) values of a(n) = y0(4, n) have been given, with phi(n) = A000010(n). They give a permutation of the smallest positive restricted residue class modulo 3^4.

%C The companion sequence is x0(4, n) = x(n) = A239130(n), n >= 0.

%C One could give a lengthy G.f.

%H Vincenzo Librandi, <a href="/A239131/b239131.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = y0(4, n) == ((3^4 + 1)/2)^(n + 3^3) (mod 3^4), n >= 0.

%F a(n + 54) = a(n), n >= 0.

%e a(0) = 41^27 (mod 81) = 80.

%t Table[Mod[41^(n + 27), 81], {n, 0, 100}] (* _Vincenzo Librandi_, Mar 23 2014 *)

%t PowerMod[41,Range[0,100]+27,81] (* _Harvey P. Dale_, Dec 04 2018 *)

%o (MAGMA) [41^(n+27) mod 81: n in [0..80]]; // _Vincenzo Librandi_, Mar 23 2014

%Y Cf. A239130.

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_, Mar 22 2014

%E More terms from _Vincenzo Librandi_, Mar 23 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:17 EDT 2022. Contains 354092 sequences. (Running on oeis4.)