%I
%S 4,15,48,118,254,498,916,1605,2702,4395,6936,10656,15982,23456,33756,
%T 47719,66366,90929,122880,163962,216222,282046,364196,465849,590638,
%U 742695,926696,1147908,1412238,1726284,2097388,2533691,3044190,3638797
%N Number of n X 3 0..2 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the sum of elements above it, modulo 3.
%H R. H. Hardin, <a href="/A238807/b238807.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/360)*n^6  (1/30)*n^5 + (7/9)*n^4  (65/12)*n^3 + (11959/360)*n^2  (1631/20)*n + 83 for n>2.
%F Conjectures from _Colin Barker_, Oct 24 2018: (Start)
%F G.f.: x*(4  13*x + 27*x^2  43*x^3 + 51*x^4  41*x^5 + 27*x^6  16*x^7 + 6*x^8) / (1  x)^7.
%F a(n) = 7*a(n1)  21*a(n2) + 35*a(n3)  35*a(n4) + 21*a(n5)  7*a(n6) + a(n7) for n>9.
%F (End)
%e Some solutions for n=5:
%e ..0..0..2....0..0..0....2..2..0....0..0..0....0..0..2....0..2..2....0..0..2
%e ..0..2..1....0..0..2....2..1..0....0..0..0....0..0..2....0..2..2....0..0..2
%e ..0..2..2....0..0..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e ..0..0..2....2..2..0....0..0..2....0..0..0....0..0..0....0..0..0....0..2..1
%e ..2..1..0....2..2..1....0..2..1....2..2..0....2..2..0....0..0..0....2..2..1
%Y Column 3 of A238812.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 05 2014
