login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of palindromic partitions of n whose greatest part has multiplicity 4.
2

%I #7 Mar 11 2014 13:41:26

%S 0,0,0,0,1,0,0,0,1,1,1,1,2,2,3,2,5,4,7,5,10,8,14,11,20,16,26,21,37,31,

%T 48,40,65,55,85,72,113,97,145,125,190,165,242,211,313,274,396,348,505,

%U 446,633,561,801,713,998,890,1249,1118,1548,1389,1922,1730

%N Number of palindromic partitions of n whose greatest part has multiplicity 4.

%C Palindromic partitions are defined at A025065.

%e a(8) counts these partitions (written as palindromes): 3333, 11222211.

%t z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &]

%t Table[p[n, 1], {n, 1, 12}]

%t t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *)

%t Table[p[n, 2], {n, 1, 12}]

%t t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *)

%t Table[p[n, 3], {n, 1, 12}]

%t t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *)

%t Table[p[n, 4], {n, 1, 12}]

%t t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *)

%t (* _Peter J. C. Moses_, Mar 03 2014 *)

%Y Cf. A025065, A087897, A238779.

%K nonn,easy

%O 0,13

%A _Clark Kimberling_, Mar 05 2014