login
Number of partitions of n^10 into parts that are at most n.
2

%I #9 May 25 2015 10:40:47

%S 1,1,513,290594892,8006513870533064,3157977415776418319210477,

%T 9355115500676554620340590943203672,

%U 139997247522791157386395916200494707946968395,8097446373533819684208223226876398545717123633973546819

%N Number of partitions of n^10 into parts that are at most n.

%C In general, for m > 3, is "Number of partitions of n^m into parts that are at most n" asymptotic to exp(2*n) * n^((m-2)*n-m) / (2*Pi). - _Vaclav Kotesovec_, May 25 2015

%H Alois P. Heinz, <a href="/A238615/b238615.txt">Table of n, a(n) for n = 0..60</a>

%F a(n) = [x^(n^10)] Product_{j=1..n} 1/(1-x^j).

%F a(n) ~ exp(2*n) * n^(8*n-10) / (2*Pi). - _Vaclav Kotesovec_, May 25 2015

%Y Column k=10 of A238016.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Mar 01 2014