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Let S(n) be a (non-vanishing) strong divisibility sequence. If p and q are relatively prime
positive integers we show that the sequence S(pn)S(qn)/S(n) is a divisibility sequence. We
give some examples of divisibility sequences of bivariate polynomials constructed by this
method. Specializing these polynomials leads us to families of linear divisibility sequences
over Z, that is, integer divisibility sequences whose terms obey a linear recurrence equation
having integer coe�cients. The natural setting for de�ning a strong divisibility sequence is
that of a GCD domain. We begin by recalling the basic theory of these domains.

1. GCD domains

An integral domain D (commutative ring with unity and no zero divisors) is a GCD domain
if every pair a, b of nonzero elements has a greatest common divisor, denoted by gcd(a, b).
The greatest common divisor satis�es the universal property that gcd(a, b) is a divisor of a
and b and if d divides both a and b (written d | a and d | b) then d divides gcd(a, b). The
element gcd(a, b) is not unique but only determined up to a unit of D.

Every UFD is a GCD domain. So, for example, the ring of integers Z is a GCD domain as
are the polynomial rings Z[x] and Z[x, y]. We gather together the results we need concerning
GCD domains in the form of a Proposition. See Woo [4] for the proof that every GCD domain
is also a LCM domain.

Proposition 1.1 Let D be a GCD domain.

(i) gcd(ab, ac) = a gcd(b, c) a, b, c ∈ D

(ii) The gcd function is a multiplicative function; that is, if gcd(a1, a2) = 1 then

gcd(a1a2, b) = gcd(a1, b)gcd(a2, b).

(iii) D is a LCM domain; that is, every pair a, b of nonzero elements in D has a least common

multiple, denoted by lcm(a, b) (determined only up to a unit of D). There holds

lcm(a, b)gcd(a, b) = ab

(iv) If a | a′
and b | b′ in the domain D then lcm(a, b) | lcm(a

′
, b

′
) in D. �

Note, due to the ambiguity in the choice of the lcm and the gcd, the above equations
are really equivalence relations whose lhs and rhs di�er by a unit of the domain D. The
same remark applies to other equations throughout this document involving the gcd or lcm
functions.

2. Divisibility and strong divisibility sequences

A sequence {a(n)n≥1}, where the terms a(n) belongs to an integral domain, is called a
divisibility sequence if a(n) divides a(nm) for all natural numbers n and m where a(n) 6= 0.
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A sequence {a(n}n≥1} of elements of a GCD domain D is said to be strong divisibil-
ity sequence (SDS for short) if for all natural numbers n and m we have gcd(a(n), a(m)) =
a(gcd(n,m)). Note the abuse of notation here: the gcd on the lhs of the equation refers to the
domain D while the gcd on the rhs is taken in Z. A strong divisibility sequence is also a divisi-
bility sequence since for all natural numbers n andm we have gcd(a(n), a(nm)) =a(gcd(n, nm))
= a(n). Thus a(n) | a(nm).

Proposition 2.1 Let S(n) be a strong divisibility sequence of nonzero elements of a GCD

domain D. Let p and q be relatively prime positive integers. Then the sequence {X(n)}n≥1

de�ned by

X(n) =
S(pn)S(qn)

S(n)

is a divisibility sequence in D.

Proof

Since a strong divisibility sequence is also a divisibility sequence we have S(n) | S(pn) in D
for all natural numbers n. Hence X(n) belongs to D for every n. We need to show that
X(n) | X(nm) in D for all natural numbers n and m.

Now by the assumption on S we have

gcd(S(pn), S(qn)) = S(gcd(pn, qn)) = S(n),

since p and q are relatively prime. It follows that

X(n) =
S(pn)S(qn)

S(n)

=
S(pn)S(qn)

gcd(S(pn), S(qn))

= lcm(S(pn),S(qn))

by Proposition 1.1 (iii). Therefore

X(nm)

X(n)
=

lcm(S(pnm), S(qnm))

lcm(S(pn), S(qn))
,

which belongs to the domain D by Proposition 1.1 (iv), since S(pn) | S(pnm) and S(qn) |
S(qnm) in D. Thus X(n) | X(nm) in D for all natural numbers n and m. �

Example 2.1 The sequence of Fibonacci numbers F(n) is a SDS. Therefore, for each pair
of coprime positive integers p and q, the sequence F(pn)F(qn)/F(n) is an integer divisibility
sequence.

Example 2.2 The sequence of Mersenne numbers 2n−1 is a SDS. Therefore, by Proposition
2.1 with p = 2 and q odd, the sequence (22n − 1)(2qn − 1)/(2n − 1) = (2n +1)(2qn − 1) is an
integer divisibility sequence.

In order to apply Proposition 2.1 to produce divisibility sequences we need a supply of
strong divisibility sequences.
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Proposition 2.2 Let D be a GCD domain. Let a and b be relatively prime elements in
D−{0}, that is, gcd(a, b) = 1. The sequence S(n) de�ned by the second-order linear recurrence

S(n) = aS(n− 1) + bS(n− 2), [S(0) = 0, S(1) = 1]

is a strong divisibility sequence, that is,

gcd(S(n), S(m)) = S(gcd(n,m))

for all natural numbers n and m.

Lucas [2] gave a proof of this result when the domain D = Z. Nor�eet [3, Theorem 3]

proved the result for the domain D = Z[x]. If we examine Nor�eet's proof we see that it only

uses the fact that the domain Z[x] is a GCD domain and so his proof can be immediately

extended to prove Propostion 2.2. We present a modi�ed version of Nor�eet's proof in the

Appendix.

3. Divisibility sequences of polynomials

In this section we apply the results of Section 2 to the particular GCD domain Z[x, y] to
produce examples of divisibility sequences of bivariate polynomials.

Proposition 3.1

(i) The sequence of homogeneous bivariate polynomials U(n) ≡ U(n, x, y) de�ned by

U(n, x, y) =
xn − yn

x− y
(1)

is a strong divisibility sequence of polynomials in the domain Z[x, y].
(ii) The sequence of homogeneous bivariate polynomials L(n) ≡ L(n, x, y) de�ned by

L(n, x, y) =


xn−yn

x−y n odd

xn−yn

x2−y2 n even

(2)

is a strong divisibility sequence of polynomials in the domain Z[x, y].
Proof

(i) This well-known result is an immediate consequence of Proposition 2.2 since one easily
veri�es that U(n) satis�es the second-order linear recurrence

U(n+ 1) = (x+ y)U(n)− xyU(n− 1)

with U(0) = 0, U(1) = 1.

(ii) The sequence of polynomials L(n) satis�es the fourth-order linear recurrence

L(n) = (x2 + y2)L(n− 2)− (xy)2L(n− 4)
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with initial conditions L(0) = 0, L(1) = 1, L(2) = 1 and L(3) = x2 + xy + y2, so we can't
directly apply Proposition 2.2. However, we clearly have L(n) = U(n) when n is odd and
(x + y)L(n) = U(n) when n is even. Using this we will show that the strong divisibility
property gcd(L(n),L(m)) = L(gcd(n,m)) of the sequence L(n) follows from part (i) of the
Proposition. We need to examine various cases.

Firstly, consider the case where both n,m are odd. Then

gcd(L(n),L(m)) = gcd(U(n),U(m))

= U(gcd(n,m)) by part (i)

= L(gcd(n,m))

since gcd(n,m) is odd.

Secondly, suppose both n,m are even. We have

(x+ y)gcd(L(n),L(m)) = gcd((x+ y)L(n), (x+ y)L(m))

= gcd(U(n),U(m))

= U(gcd(n,m)) by part (i).

Therefore,

gcd(L(n),L(m)) =
U(gcd(n,m))

x+ y

= L(gcd(n,m))

since gcd(n,m) is even.

Finally, consider the case where n,m are of di�erent parity, say, n odd and m even. We have

gcd(L(n), (x+ y)L(m)) = gcd(U(n),U(m))

= U(gcd(n,m)) by part (i)

= L(gcd(n,m)) (3)

since gcd(n,m) is odd.

Now it is easy to see that x+y is coprime to L(n) = (xn−yn)/(x−y) since n is odd, and also
coprime to L(m) = (xm − ym)/(x2 − y2) since m is even . Therefore, since the gcd function
is a multiplicative function (Proposition 1.1 (ii)), we have

gcd(L(n), (x+ y)L(m)) = gcd(L(n), x+ y)gcd(L(n),L(m))

= gcd(L(n),L(m)). (4)

Comparing (3) and (4) we see that for this case we again have gcd(L(n),L(m)) = L(gcd(n,m))
and the proof that L(n) is a strong divisibility sequence is complete. �

Applying Proposition 2.1 to the strong divisibility sequences U(n) = U(n, x, y) and L(n) =
L(n, x, y) as de�ned in Proposition 3.1 yields the following result.
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Proposition 3.2 Let p, q be a pair of coprime positive integers. The pair of sequences of
homogeneous polynomials A(n) ≡ A(n, x, y) and B(n) ≡ B (n, x, y) in Z[x, y] de�ned by

A(n) =
U(pn)U(qn)

U(n)

=
(xpn − ypn)(xqn − yqn)

(xn − yn)(x− y)
(5)

and

B(n) =
L(pn, x, y)L(qn, x, y)

L(n, x, y)
(6)

are divisibility sequences of polynomials in Z[x, y]. �

By calculating the ordinary generating function (ogf) of the sequence of polynomials A(n)
(resp. B(n)) it can be shown that A(n) (resp. B(n)) satis�es a linear recurrence of order
2min(p, q) (resp. 4min(p, q)). The following example illustrates this point.

Example 3.1 Take p = 2 and q = 3. Find the ogf of the normalized sequence A(n)/A(1).

We have from (5)

A(n)

A(1)
=

(x− y)(x2n − y2n)(x3n − y3n)
(xn − yn)(x2 − y2)(x3 − y3)

=
(xn + yn)(x3n − y3n)

(x+ y)(x3 − y3)
= c(x, y)((x4)n + (x3y)n − (xy3)n − (y4)n), (7)

where

c(x, y) =
1

(x+ y)(x3 − y3)
.

It follows from (7) that the ogf ∑
n≥1

A(n)

A(1)
zn,

of the normalized sequence A(n)/A(1) is a sum of four geometric series, and so will be a
rational function of the form zN(z)/D(z) for polynomials N(z) and D(z). A short calculation
yields

N(z) = 1− 2xy(x2 − xy + y2) + (xy)4z2

D(z) = (1− x4z)(1− x3yz)(1− xy3z)(1− y4z).

From the form of the denominator polynomial D(z) we see that the normalized sequence
A(n)/A(1), and hence also the sequence A(n), satis�es a linear recurrence of order 4 (=
2min(p, q)), whose coe�cients are polynomials in Z[x, y].
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4. Integer divisibility sequences

Clearly, we can obtain integer linear divisibility sequences from the polynomials A(n, x, y)
in (5) and B(n, x, y) in (6) simply by specializing x and y to be distinct integers. In fact, we
can relax the requirement that x and y be integers and still get integer sequences. This is
because of the symmetries satis�ed by the polynomials A(n, x, y) and B(n, x, y). Recall the
following simple consequences of the fundamental theorem of symmetric polynomials:

Any symmetric polynomial P(x, y) in Z[x, y] can be expressed as a polynomial with in-
teger coe�cients in the elementary symmetric polynomials x + y and xy. If the symmetric
polynomial P(x, y) is also invariant under change of sign of both variables x and y, that is,
P(x, y) = P(−x,−y), then P(x, y) can be expressed as a polynomial with integer coe�cients
in the elementary symmetric polynomials (x+ y)2 and xy.

A) Firstly, we consider integer divisibility sequences obtained by specializing the polyno-
mials B(n, x, y). Observe from de�nition (2) that for each n, the polynomial L(n, x, y) is a
symmetric polynomial that is also invariant under change of sign of the variables x and y:

L(n, x, y) = L(n, y, x) = L(n,−x− y).

Clearly, the same symmetries also hold for the polynomials B(n, x, y) de�ned by (6) and also
for the polynomials B(nm, x, y)/B(n, x, y) for all natural numbers n,m. Therefore, by the
above remark, these polynomials can be written as a polynomials with integer coe�cients in
the symmetric functions(x+ y)2 and xy. Thus in orderto specialize B(n, x, y) to produce an
integer divisibility sequence it su�ces to choose values for x and y so that both (x+ y)2 and
xy are integers.

To this end, let P and Q be nonzero integers and de�ne complex numbers α and β by

(α+ β)2 = P

αβ = Q (8)

so that α and β are the roots of the quadratic equation x2 −
√
Px+Q = 0:

α =

√
P +

√
P − 4Q

2
, β =

√
P −

√
P − 4Q

2
.

We also assume that α/β is not equal to a root of unity. Then we conclude that

B(n, α, β) =
L(pn, α, β)L(qn, α, β)

L(n, α, β)

is a well-de�ned linear divisibility sequence of integers of order 4min(p, q). The particular
case p = q = 1 gives the Lehmer sequence (or Lehmer numbers) L(n, α, β) [1, 5].

B) It follows from Proposition 3.2 that the sequence of functions A(n, x, y)/A(1, x, y), n ≥ 1,
is a divisibility sequence of polynomials in the domain Z[x, y]. By specializing the values of x
and y integer divisibility sequences can obtained. There are two cases to consider according
as to whether p+ q is odd or p+ q is even.

Case (i) Suppose �rst that p+ q is odd.
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Observe that in this case the polynomial A(n, x, y) given by (5), in addition to being sym-
metric in x and y, changes sign under change of sign of the variables x and y since

A(n,−x,−y) = (−1)n(p+q−1)−1A(n, x, y) = −A(n, x, y).

It follows that the polynomial A(n, x, y)/A(1, x, y) is symmetric in the variables x and y and
also invariant under change of sign of the variables x and y. Therefore, by the above remark
on symmetric polynomials, A(n, x, y)/A(1, x, y) can be written as a polynomial with integer
coe�cients in the symmetric polynomials (x + y)2 and xy. Thus A(n, x, y)/A(1, x, y) will
be an integer divisibility sequence if x and y are chosen so that both (x + y)2 and xy are
integers. Accordingly, let P and Q be nonzero integers and de�ne complex numbers α and β
by (8). We again require that α/β is not equal to a root of unity. Then

A(n, α, β)

A(1, α, β)
=

(α− β)(αpn − βpn)(αqn − βqn)

(αn − βn)(αp − βp)(αq − βq)

is a well-de�ned integer linear divisibility sequence (of order 2min(p, q)).

Example 4.1 Let p = 3 and q = 4; take P = 5 and Q = 1.

The roots α, β of the quadratic equation x2 −
√
5x+ 1 = 0 are given by

α =
1 +
√
5

2
, β =

√
5− 1

2
.

Thus the normalized sequence

A(n, α, β)

A(1, α, β)
=

(α− β)(α3n − β3n)(α4n − β4n)

(αn − βn)(α3 − β3)(α4 − β4)

=
α6n + α4n + α2n − β6n − β4n − β2n

12
√
5

.

The sequence begins [1, 14, 228, 3948, 69905, 1248072, 22352707, 400808856, ...]. See A273625.
The sequence satis�es a linear recurrence of order 2min{p, q} = 6, as shown by calculating
the ogf: ∑

n≥1

A(n, α, β)

A(1, α, β)
zn =

z(1− 14z + 40z − 14z3 + z4)

(1− 3z + z2)(1− 7z + z2)(1− 18z + z2)
.�

Case (ii) Suppose now that p+ q is even.

In this case, the polynomial A(n, x, y) given by (5) is symmetric in x and y (but not invariant
under change of sign of the variables) and so can be written as polynomial with integer
coe�cients in the elementary symmetric functions x + y and xy. Thus in order for the
divisibility sequence of polynomials A(n, x, y) to specialize to an integer divisibility sequence
it su�ces to choose values for x and y so that both x+ y and xy are integers. Accordingly,
let P and Q be nonzero integers and now de�ne complex numbers α and β by

α+ β = P

αβ = Q
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so that α and β are the roots of the quadratic equation x2 − Px+Q = 0, that is,

α =
P +

√
P 2 − 4Q

2
, β =

P −
√
P 2 − 4Q

2
.

We also require that α/β is not equal to a root of unity.. Then for each n

A(n, α, β) =
(αpn − βpn)(αqn − βqn)

(αn − βn)(α− β)

is a well-de�ned integer and forms the terms of an integer divisibility sequence. In the
particular case p = q = 1, the sequence A(n, α, β) becomes the Lucas sequence of the �rst
kind (αn − βn)/(α− β) - see [6].
Example 4.2 Let p = 3 and q = 5; take P = 1 and Q = −1.
The roots α, β of the quadratic equation x2 − x− 1 = 0 are given by

α =
1 +
√
5

2
, β =

1−
√
5

2
.

The normalized sequence

A(n, α, β)

A(1, α, β)
=

(α− β)(α3n − β3n)(α5n − β5n)

(αn − βn)(α3 − β3)(α5 − β5)

=
α7n + (−α)5n + α3n − β7n − (−β)5n − β3n

10
√
5

begins [1, 44, 1037, 32472, 915305, 26874892, 776952553, 22595381424, ...] (see A238601). The
sequence satis�es a linear recurrence of order 2 min{p, q} = 6, as shown by calculating the
ogf ∑

n≥1

A(n, α, β)

A(1, α, β)
zn =

z(1 + 22z − 181z2 − 22z3 + z4)

(1− 4z − z2)(1 + 11z − z2)(1− 29z − z2)
.

Appendix

We give a proof of Proposition 2.2 following Nor�eet [3, Theorem 3].

Proposition 2.2 Let D be a GCD domain. Let a and b be relatively prime elements in
D−{0}, that is, gcd(a, b) = 1. The sequence S(n) de�ned by the second-order linear recurrence

S(n+ 1) = aS(n) + bS(n− 1), [S(0) = 1, S(1) = 1]

is a strong divisibility sequence, that is,

gcd(S(n), S(m)) = S(gcd(n,m)) (9)

for all natural numbers n and m.
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We shall make use of the following simple properties of the gcd function in the domain D:

if gcd(a, b) = 1 then gcd(a, bc) = gcd(a, c) (10)

if a = cb+ r then gcd(a, b) = gcd(b, r). (11)

We will need two preliminary results about the sequence S(n).

Proposition A2 For n ≥ 1 we have

(i)
gcd(S(n), b) = 1 (12)

(ii)
gcd(S(n+ 1), S(n)) = 1. (13)

Proof

(i) By induction. Clearly, gcd(S(1), b) = 1 and

gcd(S(n+ 1), b) = gcd(aS(n) + bS(n− 1), b)

= gcd(aS(n), b) by (11)

= gcd(S(n), b) by (10)

and the induction goes through.

(ii) By induction. Clearly, gcd(S(2), S(1)) = 1 and

gcd(S(n+ 1), S(n)) = gcd(aS(n) + bS(n− 1), S(n))

= gcd(bS(n− 1), S(n)) by (11)

= gcd(S(n− 1), S(n)) by (10) and part (i),

and the induction goes through.�

Proposition A3 For k = 1, 2, 3, ... we have

S(n+ k) = S(k + 1)S(n) + bS(k)S(n− 1). (14)

Proof We use strong induction on k. The case k = 1 is simply the de�ning recurrence
equation for the sequence S(n). Assume (14) holds true up to k then

S(n+ k + 1) = aS(n+ k) + bS(n+ k − 1)

= a(S(k + 1)S(n) + bS(k)S(n− 1)) + b(S(k)S(n) + bS(k − 1)S(n− 1))

= S(k + 2)S(n) + bS(k + 1)S(n− 1)

and the induction goes through.�

Proof of Proposition 2.2

We need to establish the strong divisibility property

gcd(S(n), S(m)) = S(gcd(n,m)) (15)
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for all natural numbers n,m. We can assume without loss of generality that n ≥ m. Let
k = n−m. We begin by establishing the result

gcd(S(n), S(m)) = gcd(S(n−m), S(m)). (16)

This holds because

gcd(S(n), S(m)) = gcd(S(m+ k), S(m))

= gcd(S(k + 1)S(m) + bS(k)S(m− 1), S(m)) by (14)

= gcd(bS(k)S(m− 1), S(m)) by (11)

= gcd(S(k)S(m− 1), S(m)) by (10) and (12)

= gcd(S(k), S(m)) by (10) and (13)

= gcd(S(n−m), S(m)).

We are now ready to prove (15) by means of a strong induction argument on n+m. Clearly,
(15) is true for the base case n = m = 1 . We make the inductive hypothesis that (15) is
true for all n,m with n+m ≤ N . Then if n+m = N + 1

gcd(S(n), S(m)) = gcd(S(n−m), S(m)) by (16)

= S(gcd(n−m,m)) by the inductive hypothesis

= S(gcd(n,m))

and hence the induction goes through.�

Example A1 De�ne a sequence U(n)n≥1 in the ring of Gaussian integers Z[i] by the
recurrence U(n) = (1 + i)U(n− 1) + U(n− 2) with U(0) = 0 and U(1) = 1. By Proposition
2.2 this will be a strong divisibility sequence in the GCD domain Z[i].
The sequence begins [1, 1+i, 1+2i, 4i,−3+6i,−9+7i,−19+4i,−32−8i, ...]. It is not di�cult
to check that the sequence |U(n)|2 beginning [1, 2, 5, 16, 45, 130, 377, 1088, ...] is a divisibility
sequence of integers obeying a fourth-order linear recurrence. It is A138573 in the database.
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