
A Generalization of the Football Pool Problem

K.P.F. Verstraten

February 28, 2014

Abstract

In this paper, we generalize the Football Pool problem to a new, wider
class of covering problems of spaces equipped with the Hamming distance.
We refer to problems in this class as the Inverse Football Pool Problem and
the Hamming Distance Covering Problem. We find several relations be-
tween these problems and the Football Pool Problem, with some especially
interesting correspondences for binary alphabets. We use these relations
to generate combinatorial bounds for the minimal covering cardinalities
of the new instances. For open instances, we use a genetic algorithm to
improve the upper bounds and we use symmetry-reducing techniques and
the symmetry-shrunken Sherali-Adams relaxation to improve the lower
bounds.

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Operations Research and Management Science

Tilburg School of Economics and Management
Tilburg University

Contents

1 Acknowledgements 3

2 Introduction 4

3 Problem definition 6

4 General bounds for the Inverse Football Pool Problem 9

5 General bounds for the Hamming Distance Covering Problem 14

6 Symmetry in the football pool problem 19

7 The symmetry-shrunken Sherali-Adams relaxation 22

8 Improving upper bounds for open cases 27

9 Improving lower bounds for open cases 29

10 Conclusion and recommendations 32

11 Open source software used 34

12 References 35

13 Appendix A: Tables for IFPP 38

14 Appendix B: Tables for HDC 40

15 Appendix C: Covering codes for non-trivial instances 42

16 Appendix D: MATLAB codes 45

2

1 Acknowledgements

The author wishes to thank several people. Thanks go out to my supervisor
Edwin van Dam, who supported my writing a thesis on what is commonly
referred to as ’a game for mathematicians’, for which I am very grateful. I
would also like to thank Juan Vera Lizcano, who is not only my second reader,
but also the one who introduced me to the Football Pool Problem in the first
place. Thanks also go out to James Ostrowski, who provided me with helpful
comments on the Sherali-Adams relaxation from overseas.

Many thanks to my family for their support during my studies. I would
like to thank everyone at the EOR department for making the last years a very
educational experience, and I would also like to thank everyone who made the
last years very valuable in many other ways.

3

2 Introduction

The Football Pool Problem is a very famous subject in combinatorics, which was
first studied in the Finnish sports magazine Veikkaaja1 in the 1940s. In football
pools, one can buy tickets to bet on the outcome of a given number n of matches.
Usually, the payoff of such a bet depends on the number of correct guesses. In
the foolball pool problem, strategies are studied that ensure a certain payoff. If
each game has q different outcomes, the minimum number of tickets that has to
be bought to ensure that there is always one ticket where all guesses are correct
is qn. For example, in football, each match has q = 3 possible outcomes (home
win, draw, away win), so the number of tickets one has to buy to ensure he
guesses all n = 9 matches in a Dutch Eredivisie competition round correctly is
39 = 19683.

This is quite a lot, so one may also be interested in ensuring a lower number
of correct guesses. While the number of tickets that need to be bought for n
correct guesses is trivial, the number of tickets one has to buy to ensure n − 1
correct guesses cannot be expressed by a closed formula. In fact, this is a very
hard problem, which led to the discussion in Veikkaaja. For relatively small
parameters q = 3 and n = 6, the exact solution to this problem is not known.
This makes the football pool problem not only a problem of interest for football
pool fanatics, but also for mathematicians and combinatorialists. Moreover, the
problem can be seen as the construction of an efficient error correcting code in
the field of information theory, which is also of interest for mathematicians. It
is also related to the graph coloring and graph packing problems, and even to
mathematical games such as sudoku.

In the 40’s, Veikkaaja contributors and information theorists did not know
the correspondence between their research. For example, the perfect ternary
Golay code for the case q = 3, n = 13 and n − 2 correct predictions was
published in the Veikkaja by Juhani Virtakallio in 1947 [1], while information
theorist Marcel Golay independently discovered the code in 1949 [7]. In the 50’s,
the term football pool problem was more often used in mathematical articles.
Since, in football games, the number of different outcomes is q = 3, this is the
problem that was studied the most. However, many variations to this problem
have been studied since then. For q = 2, the problem is called the binary
covering problem, which is discussed, among others, in [4],[14] and [33]. The
variation q > 3 was, amongst others, discussed in [14] and [32].

Combinations between different alphabet sizes in codes have also been con-
sidered. For example, a code consisting of a letter and single digit number
has alphabet sizes 26 and 10. Especially the combinations between binary and

1While the Veikkaaja is a sports magazine, it is an important source in the history of
covering codes. Many upper bounds for covering codes have been published in this magazine
that have not been improved until this date. Exactly how the contributors constructed these
bounds without modern computer technology remains somewhat of a mystery today.

4

ternary alphabets have been considered, amongst others in [12], [17] and [24].

Another interesting variation is that of multiple coverings. Suppose that
multiple, say m, football pool betters want to work together and implement a
strategy that will ensure at least m prizes. That is, there are at least m tickets
bought that have at least a certain amount of right guesses. Working together
can actually decrease the amount of tickets per person needed, so it can allow
for more efficient strategies. This variation has been studied in [3], [10] and [34].
Some more variations are discussed in [11].

The variation that we want to generalize in this paper is that which is called
the inverse football pool problem. This is the problem of placing a minimum
number of bets, such that there is always one completely wrong. This problem
was actually discussed in the Veikkaaja editions 52 / 60, but had gone unno-
ticed by the mathematical community for a long time. In 2002, Taneli Riihonen
rediscovered the problem [29], which was then published by Österg̊ard and Ri-
ihonen a year later [27]. In 2011, the problem was studied by David Brink,
who calculated better lower bounds for the cases with 7 or more matches, and
introduced bounds for the cases with q > 3 and the name inverse football pool
problem [2].

The problem is named the inverse football pool problem because we require
a minimum number of wrong guesses, instead of a minimum number of right
guesses. However, only the case where the number of incorrect guesses equals n
is discussed in these papers. This means that the inverse football pool problem
can be generalized to incorporate other minimum numbers of incorrect guesses.
Furthermore, since n incorrect guesses is a boundary case, it also means that we
require exactly n incorrect guesses. This problem can be generalized to other
exact numbers of correct or incorrect guesses as well.

The construction of codes for these strategies may not be very useful in
actual football pools. However, the problem does relate to the covering problem
of interesting symmetric graphs. Furthermore, the constructions may be useful
as space-filling designs in discrete spaces.

In Section 3, we give the general problem statement of the football pool
problem and the variations we will discuss. Then, in Section 4, we will discuss
the football pool problem with a maximum number of correct guesses. We
provide combinatorial bounds for the general cases of this problem. In Section
5 we will discuss bounds for the football pool problem with an exact number
of correct guesses. To the writer’s best knowledge, this problem has not been
studied in this context before. In Section 6, we give some notions on symmetry in
the football pool problem, and in Section 7, we explain the symmetry-shrunken
Sherali-Adams relaxation, a technique that we can use to improve our lower
bounds. In Section 8, we use a genetic algorithm to improve our upper bounds,
and in Section 9, we explain our implementation of the Sherali-Adams relaxation
to our open cases in order to improve our lower bounds. A short summary of

5

this paper and its conclusions can be found in Section 10, along with some
recommendations for further research.

3 Problem definition

Consider the set Fnq := {0, 1, · · · , q − 1}n, q, n ∈ N, an n-dimensional space
with q letters in each dimension that is equipped with the Hamming distance:
dH(w, v) := |{i : wi 6= vi}|. We refer to elements in Fnq as words, because they
could represent words of length n in an alphabet of size q. In the football pool
problem, we search for a minimum cardinality covering subset C of Fnq . This is
defined as follows:

Definition 3.1. In the football pool problem (FPP), let C ⊆ Fnq . For any
given parameters q, n ∈ N and any radius R, 0 ≤ R ≤ n, we call C a covering
of Fnq with radius R if ∀w ∈ Fnq ,∃ v ∈ C : dH(w, v) ≤ R.

We denote an instance of the football pool problem with parameters q, n
and R by FPPq(n,R).

In this paper, we study variations on FPP , where words cover all other
words at Hamming distance at least R and at Hamming distance exactly R,
respectively. We refer to these problems as the inverse football pool problem
and the Hamming distance covering problem, respectively. In these problems,
a covering subset is defined as follows:

Definition 3.2. In the inverse football pool problem (IFPP), let C ⊆ F be a
subset of F . For any given parameters q, n ∈ N and any radius R, 0 ≤ R ≤ n,
we call C a covering of F with radius R if ∀w ∈ F,∃ v ∈ C : dH(w, v) ≥ R.

Definition 3.3. In the Hamming distance covering problem (HDC), let C ⊆ F
be a subset of F . For any given parameters q, n ∈ N and any radius R, 0 ≤ R ≤
n, we call C a covering of F with radius R if ∀w ∈ F,∃ v ∈ C : dH(w, v) = R.

We denote an instance of the inverse football pool problem and the Hamming
distance covering problem with parameters q, n and R by IFPPq(n,R) and
HDCq(n,R), respectively.

We denote the cardinality of the smallest possible covering subset of F in
FPP by Kq(n,R). Many of the values for this problem are tabulated online at
http://www.sztaki.hu/~keri/codes/. For IFPP and HDC, we denote the
cardinality of the smallest possible covering subsets by Tq(n,R) and Eq(n,R),
respectively. We will illustrate the construction and verification of smallest
possible covering subsets for these problems in the next example:

6

http://www.sztaki.hu/~keri/codes/

Example 3.1. Consider the space Fnq for q = 2, n = 3, F = {0, 1}3. If we
enumerate the words in this space as vectors, we get the following matrix:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


We can express the Hamming distances between these words, which can be

readily checked, by the following distance matrix:

DH =



0 1 1 2 1 2 2 3
1 0 2 1 2 1 3 2
1 2 0 1 2 3 1 2
2 1 1 0 3 2 2 1
1 2 2 3 0 1 1 2
2 1 3 2 1 0 2 1
2 3 1 2 1 2 0 1
3 2 2 1 2 1 1 0


For a given radiusR, we can then define different covering matricesAK,R, AT,R

and AE,R as follows:

AK,R(i,j) =

{
1 if DH

(i,j) ≤ R
0 otherwise

AT,R(i,j) =

{
1 if DH

(i,j) ≥ R
0 otherwise

AE,R(i,j) =

{
1 if DH

(i,j) = R

0 otherwise

In these matrices, each column represents the set covered by the correspond-
ing word for FPP , IFPP or HDC with radius R. Using these matrices, we can
then define the integer linear programming formulation of each of the problems:

minx e
Tx

s.t. Ax ≥ e
xi ∈ {0, 1}∀ i ∈ {1, 2, · · · , 8}.

7

Where A = AK,R, AT,R or AE,R for FPP , IFPP or HDC, respectively.
Here, e denotes the vector of ones of length 8, or length qn in the general case.

Solving these integer linear programming problems, we attain the following
values:

K2(3, 0) = 8 K2(3, 1) = 2 K2(3, 2) = 2 K2(3, 3) = 1

T2(3, 0) = 1 T2(3, 1) = 2 T2(3, 2) = 2 T2(3, 3) = 8

E2(3, 0) = 8 E2(3, 1) = 4 E2(3, 2) = 4 E2(3, 3) = 8

Note that here, the values K2(3, 0),K2(3, 1),K2(3, 2) and K2(3, 3) are solu-
tions to instances of the original football pool problem, and the values T2(3, 3)
and E2(3, 3) correspond to the solution to Brink’s inverse football pool problem
for q = 2, n = 3 [2].

The ILP formulation of this problem is a special case of the set cover problem
(SCP), which is a well-known problem in combinatorics. The corresponding
set cover decision problem, which is to establish whether a covering code with
a given cardinality |C| exists for an instance, is one of Karp’s 21 NP-complete
problems [16]. The problem of finding a minimum cardinality covering code for
an instance is an NP-hard problem [18].

Because the problems are NP-hard, polynomial time algorithms cannot pro-
duce guaranteed optimal results, unless P = NP. In fact, polynomial time
algorithms cannot produce a tighter approximation than (1 − o(1)) ln n times
the optimal value for general SCP , an approximation bound close to the guar-
anteed bound 0.72 ln n, that is reached by a greedy algorithm [6]. This bound is
not very tight. For example, a straighforward greedy algorithm for FPP3(6, 1)
finds 19 ≤ K3(6, 1) ≤ 90, while its actual cardinality is known to be between 71
and 73.

Even though the problems are NP-hard, for instances of this size, an inte-
ger linear programming formulation can easily be solved. However, for larger
instances, this is not so easy. This is because of the symmetric nature of the
problem. Because of this symmetry, a branch-and-bound decomposition of the
problem will have many symmetric nodes, which results in similar calculations
being made a lot of times before a node can be killed. Because of this symmetry,
the value of K3(6, 1) is still unknown, even though non-symmetric ILP problems
of the same size (729 nodes) are solved on a daily basis. The complexity of a
symmetric problem also greatly increases when we consider larger problem sizes.

Since solving the ILP formulation is too time-consuming to compute the
smallest covering set cardinalities for larger instances, combinatorial construc-
tions have proven to be useful in solving the football pool problem and other

8

symmetric problems. In Section 4 and 5, we consider the same instance as in
Example 3.1, and show that the given values are indeed correct for this instance
using combinatorial arguments. These bounds will be generalized for other in-
stances of IFPP and HDC. We will not consider new or improved bounds for
FPP in these sections, but some relations between the different problems will
be discussed.

For cases where combinatorial bounds are not sufficient to find an optimal
value for an instance, we will need other methods to improve the lower and upper
bounds for this value. For upper bounds, local search algorithms can be used to
approximate the optimal bound. Most of the tightest bounds known today have
been constructed by use of such local search methods, such as tabu search [35],
simulated annealing [19] and genetic algorithms [8]. We use a genetic algorithm
to improve the upper bounds for our open instances. The construction of these
upper bounds for IFPP and HDC is decribed in Section 8.

Lower bounds for FPP are often constructed by combinatorial arguments
[15][22]. A less often used method to construct lower bounds is by relaxations of
the ILP formulation. However, Ostrowski recently showed that the use of ILP
relaxations can be used to provide good lower bounds [28]. We can use a simple
LP relaxation, but more sophisticated relaxations can be used to generate tighter
bounds, such as the Lagrangian relaxation [5], the Sherali-Adams relaxation
[30], the Lovász-Schrijver relaxation [25] and the Lasserre relaxation [20]. The
improvement of lower bounds for open instances by relaxations will be discussed
in Section 9.

4 General bounds for the Inverse Football Pool
Problem

An important general bound for any set covering problem is the so called sphere-
packing bound or volume bound. Since the problem is symmetric, each word
covers the same amount of words. Since we know the total amount of words in
Fnq , we can derive a lower bound by dividing it by the number of words covered
by each word:

Theorem 4.1. For any three values q, n,R ∈ N, Tq(n,R) ≥ qn/
∑n
r=R((q −

1)r ∗
(
n
r

)
).

Proof. For any word w ∈ Fnq and a radius r, 0 ≤ r ≤ n, consider the set

SH(w, r) = {v ∈ Fnq : dH(w, v) = r} for 0 ≤ r ≤ n. Any v ∈ SH(w, r)
differs from w in exactly r coordinates. Since w has got n coordinates, we
can choose these r coordinates in

(
n
r

)
ways. For each of these combinations,

each coordinate can attain q− 1 values, since we have q different values in each

9

dimension, and the value must be different than that in w. Therefore, for each
choice of coordinates, there are (q− 1)r words at distance r from w. Therefore,
|SH(w, r)| = (q − 1)r ∗

(
n
r

)
.

Since a word w covers another word v if dH(w, v) ≥ R, we add over all
r ≥ R, so each word covers

∑n
r=R(q − 1)r ∗

(
n
r

)
other words.

We know that |Fnq | = qn. Since each word in a code C covers
∑n
r=R(q−1)r ∗(

n
i

)
words, C cannot be a covering code for Fnq if |C| ∗

∑n
r=R(q− 1)r ∗

(
n
r

)
≤ qn.

Therefore, since Tq(n,R) corresponds to the cardinality of a minimum size
covering code, we have that qn/

∑n
r=R((q − 1)r ∗

(
n
r

)
) ≤ Tq(n,R).

The value of the sphere-packing bound is actually equal to the lower bound
found by solving the linear relaxation of the ILP stated in Section 3. Note
that, since Tq(n,R) has an integer value, we can round this lower bound up to
dqn/

∑n
r=R((q − 1)r ∗

(
n
r

)
)e.

For the values in Example 3.1, we thus have the following lower bounds:

T2(3, 0) ≥ d8/8e = 1 T2(3, 1) ≥ d8/7e = 2
T2(3, 2) ≥ d8/4e = 2 T2(3, 3) ≥ d8/1e = 8

In fact, we can see that the optimal value found in Example 3.1 is equal to
the sphere-packing lower bound for the cases R = 0, 2, 3. This gives rise to the
following definition:

Definition 4.1. A covering code C is called a perfect code if its cardinality is
equal to its sphere-packing lower bound. That is, if each word is covered exactly
once.

Note that we do not mean the rounded-up sphere-packing bound, but the
value qn/

∑n
r=R((q − 1)r ∗

(
n
r

)
). Indeed, this implies that each word is covered

exactly once. For some of the cases from Example 3.1, this is not surprising.
For the case R = 0, the number of covered words per word can be rewritten as
follows:

∑n
r=0((q − 1)r ∗

(
n
r

)
) =

∑n
r=0(a(n−r)br

(
n
r

)
) with a = 1 and b = q − 1.

Then, by the binomial theorem, we have that
∑n
r=0(a(n−r)br

(
n
r

)
) = (a +

b)n = qn = |Fnq |, so any one word covers Fnq . Obviously, this is a perfect code
with Tq(n, 0) = 1. Note that this is the same problem as the trivial maximum-
distance football pool problem for R = n, which leads to Kq(n, n) = 1.

10

The perfect code for the case q = 2, n = 3, R = 3 can be generalized as
well, to a class of perfect codes for IFPP2(n, n). For these cases, each word
covers only its exact opposite (e.g. [1, 0, 1]> covers [0, 1, 0]>), so a covering code
needs to include every word’s opposite, which is unique, since q = 2. Therefore,
T2(n, n) = 2n (II). Even though it also holds that T2(n, n) = K2(n, 0), this case
is not equal to FPP2(n, 0), since every word covers only itself in that problem.
For this reason, when we take q > 2, we still have Kq(n, 0) = qn, while Tq(n, n)
not trivial [2]. However, for q = 2, there is a remarkable correspondence between
FPP and IFPP :

Theorem 4.2. For any two values n,R ∈ N, we have that T2(n,R) = K2(n, n−
R).

Proof. Let q = 2 and n,R ∈ N. For all w ∈ Fnq , we denote by w′ the unique

word in SH(w, n). Since q = 2, for any word v ∈ Fnq , either vi = wi or vi = w′i.

Therefore, dH(v, w)+dH(v, w′) = n. This implies that the set SH(w, r) is equal
to the set SH(w′, n− r) for all 0 ≤ r ≤ n. It follows that, if a code C is covering
for IFPP2(n,R). Then the code C ′ = {w′ : ∃w ∈ C : dH(w,w′) = n} is
covering for FPP2(n, n − R). Since the problems are equivalent, it holds that
their minimal cardinality solutions T2(n,R) and K2(n, n−R) must be equal.

The case IFPP2(3, 2) = 2 also has a perfect code. This code is less trivial,
and is part of an infinite length class of perfect codes, which is stated in the
following theorem:

Theorem 4.3. For any odd n ∈ N and a radius R = n+1
2 , there is a perfect

code for IFPP2(n,R) with cardinality T2(n,R) = 2.

Proof. Let q = 2, take an odd n ∈ N and R = n+1
2 . Take two words w,w′ ∈ Fnq ,

such that w′ ∈ SH(w, n). According to Theorem 4.1, each of these words covers∑n
r=R((q−1)r ∗

(
n
r

)
) =

∑n
r=R

(
n
r

)
= 1

2 ∗2n words. Here, the last equality follows

from the formula
∑n
r=0

(
n
r

)
= 2n and the fact that R = n+1

2 .

Similar to Theorem 4.2, we can show that SH(w, r) = SH(w′, n − r)∀ 0 ≤
r ≤ n. This means that if dH(v, w) ≥ R, then dH(v, w′) ≤ n− R = n− n+1

2 <
n − n

2 = n
2 <

n+1
2 = R and vice-versa. Therefore, a word is always covered by

either w or w′, and never by both.

This means that 2∗ 1
2 ∗2

n = 2n = |Fnq | unique words are covered by w and w′

together. Therefore, they form a perfect covering code with T2(n,R) = 2.

The code for IFPP2(3, 1) is not perfect. In fact, nontrivial perfect codes
are rather scarce. By Theorem 4.2, however, we have that all perfect codes for
FPP2(n,R) have an equivalent perfect code for IFPP2(n, n−R). This means

11

that for all n of the form n = 2j − 1, j ∈ N, we have T2(n, n − 1) = 2n−j [34].
Furthermore, for IFPP2(23, 20), we have an equivalent to the perfect binary
Golay code [23], with T2(23, 20) = 4096. The ternary Golay code, which is
perfect for FPP3(11, 2) does not have an equivalent in IFPP . We can show
this more generally:

Theorem 4.4. For any three values q, n,R ∈ N, with 1 < R < n, q > 2,
IFPPq(n,R) does not have a perfect code.

Proof. Take any two words w, v ∈ Fnq . Since q > 2, we can then construct a
word u ∈ Fnq , such that wi 6= ui 6= vi, i ∈ {1, . . . , R}. Therefore, dH(w, u) ≥ R,
dH(v, u) ≥ R, so both w and v cover u. This means that any code containing
at least two words is not perfect. Since we have that R > 1, we know that at
least two words are needed to cover Fnq , so any covering code is not perfect.

For instances without a perfect code, the sphere-packing lower bound is
usually not a very tight bound. For some instances of IFPP the following
lower bound is very useful:

Theorem 4.5. For any three values q, n,R ∈ N, Tq(n,R) ≥ n
n−R+1 .

Proof. Consider IFPPq(n,R). Now, for a word not to be covered by another
word, they need to have at least n−R+ 1 coordinates in common. If a words is
not covered by any word in a code C, that means that it has at least n−R+ 1
coordinates in common with every word in the code. If we can construct a
code C, such that for all w, v ∈ C, it holds that dH(w, v) = n, this means an
uncovered word must have at least |C| ∗ (n − R + 1) coordinates. We know
the number of coordinates in a word to be n, so a code cannot be covering if
|C| ∗ (n−R+ 1) ≤ n. This implies that for any covering code C, we must have
that |C| > n

n−R+1 and thus Tq(n,R) > n
n−R+1 or Tq(n,R) ≥ b n

n−R+1 + 1c.

If q > n
n−R+1 , we can actually construct a code C such that dH(w, v) =

n ∀w, v ∈ C, namely:

{(0, 0, . . . , 0), (1, 1, . . . , 1), · · · , (b n

n−R+ 1
c, b n

(n−R+ 1)
c, . . . , b n

n−R+ 1
c)}.

This is a so-called repetition code For these cases, we have a strict bound:

Corollary 4.5.1. For any three values q, n,R ∈ N, such that q ≥ b n
n−R+1 + 1c,

there is a smallest covering code with Tq(n,R) = b n
n−R+1 + 1c.

On the other hand, if q < b n
n−R+1 + 1c, there is no smallest covering code

with Tq(n,R) = b n
n−R+1 + 1c. Therefore, Tq(n,R) > b n

n−R+1 + 1c.

12

From this corollary, we can see that the Tq(n,R) decreases as q increases.
This is true in general for IFPPq(n,R): Let q, n,R ∈ N and let C be a covering
code for Fnq = {0, 1, · · · , q − 1}n, with |C| = Tq(n,R). Then, for any w′ ∈
Fnq+1 = {0, 1, · · · , q}n, define w as follows:

wi =

{
0 if w′i = q
w′i otherwise

Since no coordinate attains the value q in w, it is also in Fnq , hence it is
covered by at least one v ∈ C. Since no coordinate in v attains the value q, we
have that R ≤ dH(w, v) ≤ dH(w′, v), so w′ is also covered by v. Therefore, C is
a covering code for Fnq+1 with cardinality Tq(n,R). It follows that Tq(n,R) ≥
Tq+1(n,R).

The value Tq(n,R) also decreases when n increases. This can be proven by
a special case of direct multiplication of covering codes:

Theorem 4.6. For any five values q, n, n′, R and R′ ∈ N, it holds that Tq(n+
n′, R+R′) ≤ Tq(n,R) ∗ Tq(n′, R′).

Proof. Let C and C ′ be a covering code for Fnq = {0, 1, · · · , q − 1}n and Fn
′

q =

{0, 1, · · · , q − 1}n′ , respectively. Define the set C ′′ := {w′′ : ∃w ∈ C,w′ ∈ C ′ :
w′′i = wi ∀ i ≤ n,w′′i = w′i ∀n < i ≤ n+ n′}. Note that |C ′′| = |C| ∗ |C ′|.

Now, for any word v ∈ Fn+n
′

q = {0, 1, · · · , q − 1}n+n′ , there is a word
w ∈ C such that |{i ≤ n : wi 6= vi}| ≥ R and a word x′ ∈ C ′ such that
|{n < i ≤ n′ : w′i 6= vi}| ≥ R. Therefore, there is a word w′′ = [w,w′]> ∈ C ′′,
for which dH(w′′, v) = |{i ≤ n : wi 6= vi}| + |{n < i ≤ n′ : w′i 6= vi}| ≥ R + R′.

Hence, C ′′ is a radius R+R′ covering code for Fn+n
′

q .

The case Tq(n+1, R) ≤ Tq(n,R)∗Tq(1, 0) = Tq(n,R) is a specific case of this
direct multiplication. However, when n and R increase simultaneously, Tq(n,R)
increases, which we will show in the following theorem:

Theorem 4.7. For any three values q, n,R ∈ N, we have that Tq(n+1, R+1) ≥
Tq(n,R).

Proof. Let q, n,R ∈ N and let C ′ be a covering code for Fn+1
q = {0, 1, · · · , q −

1}n+1 with radius R + 1. Now, we define the set C ⊆ Fnq = {0, 1, · · · , q − 1}n
as follows: C = {w : ∃w′ ∈ C ′ : w′i = wi ∀ i ≤ n}. Note that |C| ≤ |C ′|.

Now, for any v ∈ Fnq and w ∈ C we have that dH(w, v) = |{i : wi 6= vi}| =
|{i < n+ 1 : w′i 6= v′i}| ≥ |{i : w′i 6= v′i}| − 1 ≥ (R + 1)− 1 = R. Therefore, C is
covering for Fnq with radius R. It follows that, Tq(n,R) ≤ Tq(n+ 1, R+ 1).

13

Even with these bounds, there are still a lot of open values for this problem.
We will focus on the (traditional) cases q = 3, n ≤ 13. The values for T3(n, n−1)
are open for n ≥ 6, the values for T3(n, n− 2) are open for n ≥ 9 and the values
for T3(n, n− 3) are still open for n ≥ 12. These problems need to be optimized
for relatively large sets Fnq , so we need a method to deal with the symmetry of
this problem.

5 General bounds for the Hamming Distance
Covering Problem

ForHDC, the border casesHDCq(n, 0) andHDCq(n, n) are equal to FPPq(n, 0)
and IFPPq(n, n), respectively. We have thatKq(n, 0) = Eq(n, 0) and Tq(n, n) =
Eq(n, n). Furthermore, instances of HDC2 have an interesting property:

Theorem 5.1. For any n,R ∈ N with 0 ≤ R ≤ n, we have that any code is a
covering for HDC2(n,R) if and only if it is covering for HDC2(n, n−R).

Proof. From Theorem 4.2, we know that for any word w ∈ Fn2 , there is exactly
one word w′ ∈ SH(w, n) and that for any word v ∈ Fn2 , we have that dH(v, w)+
dH(v, w′) = n. Therefore, if dH(v, w) = R, then dH(v, w′) = n− R. Suppose a
code is covering for HDC2(n,R). Then for all w ∈ Fn2 , there is a word v in the
code such that dH(v, w) = R. Then we also have for any word w′ ∈ Fn2 , there
is a word v in the code such that dH(v, w′) = n−R, hence the code is covering
for HDC2(n, n−R). The proof for the reverse is similar.

We therefore have Eq(n,R) = Eq(n, n − R), so it holds that K2(n, 0) =
E2(n, 0) = E2(n, n) = T2(n, n), a special case of Theorem 4.2. However,
for all values 0 < R < n, HDC2(n,R) is not equivalent to FPPq(n,R) or
IFPPq(n,R), even for q = 2.

Note that in general the set covered by a word in HDCq(n,R) is included
in the set covered by that same word in FPPq(n,R) and IFPPq(n,R), so we
have Eq(n,R) ≥ Kq(n,R) and Eq(n,R) ≥ Tq(n,R) for all q, n,R ∈ N.

Similar to IFPP , we have a sphere-packing bound for HDC. Since each
word covers (q−1)R∗

(
n
R

)
other words, this sphere packing bound equals qn/((q−

1)R ∗
(
n
R

)
). For this problem, we also have an infinite length class of instances

where we can attain this bound, and thus have perfect codes. To show this, we
first introduce some notions from graph theory.

Any covering matrix A corresponds to an undirected graph (V,E), with V
the set of qn vertices corresponding to words in Fnq and E the set of edges, such
that for all v, w ∈ V, (v, w) ∈ E if Avw = 1. A vertex v then covers a vertex w if

14

(v, w) ∈ E. The graph of the instance HDC2(n, 1), for example, is a hypercube
of dimension n. Note that, if a vertex v covers itself, we have that (v, v) ∈ E.
We introduce the notions of connectivity and bipartitivity for a graph:

Definition 5.1. In a graph (V,E), a pair of vertices v, w are called connected,
if (V,E) contains a path of edges from v to w. A graph is said to be connected
if all pairs v, w ∈ V are connected.

Definition 5.2. A graph (V,E) is called bipartite if we can divide V into two
disjoint subsets U,W , such that every edge in e ∈ E connects a vertex u ∈ U to
a vertex w ∈W .

If a graph is not connected, this means we do not have one covering problem,
but multiple separate covering problems. For many instances of HDC, this
actually holds:

Lemma 5.1. The graph (V,E), corresponding to an instance HDC2(n,R) with
R > 0 even, is not connected.

Proof. Consider a word w ∈ Fn2 , we denote the number of zeros in w by z(w).
Since q = 2, we can generate a word v ∈ SH(w,R) by changing r1 ones in w
to zeros and r2 zeros in w to ones, such that r1 + r2 = R. This means that
z(v) = z(w) + r1 − r2. Since R is even, either r1 and r2 are both odd or both
even. So if z(w) is odd, this means that z(v) is odd. If z(w) is even, z(v) is
even, for all v ∈ SH(w,R). This means that in the corresponding graph (V,E),
there exists no edge (w, v) ∈ E if z(w) is odd and z(v) is even, for all w, v ∈ V .
Therefore, vertices w ∈ V with z(w) odd are not connected to vertices v ∈ V
with z(v) even.

We can, however, see that all vertices v, w with z(v), z(w) odd are connected,
and all vertices v, w with z(v), z(w) even are connected by choosing different
r1, r2. This means that all graphs corresponding to an instance HDC2(n,R)
with R even consist of two connected subgraphs. Note that in both subgraphs,
each vertex covers vertices at Hamming distance R. Furthermore, the num-
ber of odd vertices and the number of even vertices are equal by properties of
the binomial coefficients. This means that the two connected subgraphs are
isomorphic.

For R odd, the graph corresponding to HDC2(n,R) has the property of
bipartitivity:

Lemma 5.2. The graph (V,E), corresponding to an instance HDC2(n,R) with
R odd, is bipartite.

Proof. We again denote the number of zeros in a word w ∈ Fn2 by z(w). Since
R is odd, two words w, v ∈ Fn2 only cover each other if z(w) is even and z(v) is

15

odd or vice-versa. For the graph (V,E) corresponding to HDC2(n,R), we can
therefore define two sets U,W ⊂ V , such that z(u) is odd for all u ∈ U , z(w)
is even for all w ∈ W . These sets are disjoint and we have that U ∪W = V .
Then, by Definition 5.2, the graph (V,E) is bipartite.

We define a duo of words, w0 and w1, such that there is a word w ∈ Fn−12

for which w0 = [0w]T and w1 = [1w]T . Note that in a duo w0, w1, we always
have that z(w0) is odd and z(w1) is even, or vice-versa. We can therefore see
them as corresponding words in the two isomorphic subgraphs of an instance
with R even. We can therefore find a minimum cardinality code for one of the
connected subgraphs, and generate the optimal code for the other graph by
selecting the duo words of those in the subcode.

The construction of these duo codes leads to an interesting equivalence. We
therefore first define a more general case of HDC:

Definition 5.3. We define R to be the collection of all subsets of {0, . . . , n}.
We then denote by HDCq(n, S), S ∈ R the covering problem, such that any
code C ⊆ F is a covering of F if ∀w ∈ F,∃ v ∈ C, r ∈ S : dH(w, v) = r.

Note that any instance of FPP or IFPP can be written as a special case
of HDC in this way. We use this definition in the next theorem:

Theorem 5.2. For R > 0, HDC2(n,R) is equivalent to HDC2(n− 1, {R,R−
1}).

Proof. First we show the case for R even. We then know that the corresponding
graph is not connected. Instead, we have two equivalent connected subgraphs.

We prove that the subgraph with all words w with z(w) is equivalent to the
graph corresponding to HDC2(n− 1, {R,R− 1}). The case for the graph with
z(w) odd is similar.

We can relabel the vertices in a connected subgraph by removing the first
coordinate of the word corresponding to each vertex. We then have a vertex
for each word in Fn−12 . We prove that two words cover each other if they are
at Hamming distance R or R − 1. Since we have that

(
n
R

)
=
(
n−1
R

)
+
(
n−1
R−1

)
, it

follows that all words at other Hamming distance do not cover each other.

Take two words w, v ∈ Fn−1q , such that dH(w, v) = R − 1. Since R is even,
this means that either z(w) is even and z(v) is odd or vice-versa. This means
that the deleted coordinates for these words were unequal, hence their Hamming
distance in the original labeling was R. Therefore, they cover each other.

Now take two words, w, v ∈ Fn−1q , such that dH(w, v) = R. Since R is even,
this means that z(w) and z(v) are either both even or both odd. Therefore,

16

their deleted coordinates are equal, and their Hamming distance in the original
labeling was also R. Therefore, they cover each other.

This means that the minimal cardinality solution to each of the subgraphs
is equal to E2(n−1, {R,R−1}). Hence, the minimal cardinality covering of the
full graph is equal to 2 ∗E2(n− 1, {R,R− 1}), and the problems are equivalent.

For R odd, we can do something similar. Since the graph corresponding to
HDC2(n,R) is bipartite, we can define U and W to be the sets of all vertices v
with z(v) odd or even, respectively. Now consider the subgraph consisting only
of the vertices in U . The case for W is similar.

We now have a subgraph (U, ∅) that is edgeless. Now, each vertex u ∈ U has
a corresponding duo word in W . Then, for any two vertices u, v ∈ U , we add
the edge (u, v) if dH(v, w) = R, where w is the duo word corresponding to u.

Note that the problem of covering this graph is equivalent to the problem of
covering all vertices u ∈ U in the original graph, since all the covering sets are
the same.

We relabel the vertices in the subgraph by removing the first coordinate
from all words corresponding to the vertices. Note that we now have vertices
corresponding to Fn−12 . By similar reasoning as for the subgraph with R even,
we can show that all words now cover other words at Hamming distance R or
R − 1. We can create the same problem by creating a subgraph consisting of
all vertices w ∈ W . Since the problems of covering the vertices u ∈ U and
the vertices w ∈ W are equivalent, we therefore also have that HDC2(n,R) is
equivalent to HDC2(n− 1, {R,R− 1}) when R is odd.

This proof gives an interesting relation between a class of bipartite graphs
and graphs with isomorphic disconnected subgraphs that can correspond to each
other such that their minimal covering cardinalities are equal.

Left: HDC2(3, 1) (bipartite). Right: HDC2(3, 2) (disconnected).

17

Note that Theorem 5.2 implies E2(n,R) ≥ 2 ∗K2(n − 1, R). This gives us
useful lower bounds even for R > 1. For R = 1, we can derive the following:

Corollary 5.2.1. For any instance HDC2(n, 1) with n > 1, there is an optimal
code with E2(n, 1) = 2 ∗K2(n− 1, 1).

Note that this does not means that each of these problems is closed, since
K2(n, 1) is open for most cases with n ≥ 6. For n of the form n = 2j − 1, j ∈ N,
however, we have cases of FPP2(n, 1) with a perfect code. This also means that
there are corresponding perfect codes for HDC2(n+ 1, 1):

Theorem 5.3. For all j ∈ N, there is a perfect code for HDC2(2j , 1) and
HDC2(2j , 2j − 1) with E2(n, 1) = E2(n, n− 1) = 2n−j .

Proof. For these instances, the sphere-covering bound equals 2n

(2−1)1∗(n
1)

= 2n/n.

Since n is of the form 2j , j ∈ N, this bound is equal to 2n/2j = 2n−j .

We know thatK2(n−1, 1) = 2(n−1)−j [26]. Since E2(n, 1) = 2∗K2(n−1, 1) =
2n−j , we have a perfect code.

We can generalize the notion of duos for q > 2 and R > 1 in the follow-
ing way. We form a code for HDCq(n,R) from the union of two subcodes:
C = {[CR Cn−R]T : CR ⊆ FRq , Cn−R ⊆ Fn−Rq }. Choose a subradius r ∈ N, 0 ≤
r ≤ R. We then have that C is covering for HDCq(n,R) if Cn−R is covering
for FPPq(n − R,R − r) and CR is covering for HDCq(R,R), HDCq(R,R −
1), · · · , HDCq(R, r). Note that if we take q = 2, R = 1, r = 0, we get the con-
struction of duos from Theorem 5.3 and if we take R = 0, we get the equivalence
of FPPq(n, 0) and HDCq(n, 0).

We denote the minimal cardinality for a such a covering code CR byDq(R, r).
For q = 2, we have that CR is a covering code for HDC2(R,R), which has
optimal solution E2(R,R) = 2R = |FR2 |. Therefore, Dq(R, r) = 2R, which does
not depend on the choice of r. Since we have that Kq(n,R) decreases as R
increases, taking r = 0 leads to the best upper bound of this kind. For general
q, we have that Dq(R,R) = Tq(R,R) and Dq(R, 0) = qR. Finding Dq(R, r) for
q > 2, 0 < r < R is not trivial. For small instances of this problem, D3(R, r) is
tabulated below:

D3 r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
R = 1 3 2 − − − − −
R = 2 9 4 3 − − − −
R = 3 27 6 6 5 − − −
R = 4 81 15 9 9 8 − −
R = 5 243 27− 35 15− 17 15 15 12 −
R = 6 729 71− 98 18− 31 18− 28 18− 27 18− 27 18

18

Note that direct multiplication of duo codes can be used to generate upper
bounds for larger instances. For any instance of HDC, we have that Eq(n,R) ≤
Dq(R, r)∗Kq(n−R,R−r) for all r ≤ R ≤ n for which n−R ≥ R−r. This form
of multiplication often leads to a tighter upper bound than direct multiplication,
which is, similar to Theorem 4.6, also possible for HDC.

Like in the inverse football pool problem, we focus on variations of the
traditional FPP cases, q = 2, 3 and n ≤ 13. After straightforward optimization,
we still have open instances for HDC2(n,R) with n > 8 and for HDC3(n,R)
with n > 5. For instances n > 4, we still have open problems for D3(R, r).
We will improve the bounds for these open instances and the open instances for
IFPP in Sections 8 and 9.

6 Symmetry in the football pool problem

We saw in Example 3.1 that we can express an instance of FPP, IFPP or
HDC as the integer linear program minx∈{0,1}qn {eTx|Ax ≥ e}. We denote the
feasible region of such an instance by F . A permutation π is a bijection from
the set of indices of x, denoted by Iq

n

, to itself. We denote the set of all possible
permutations on Iq

n

by Πqn . For each π ∈ Πqn , we can create the matrix Pπ

such that

Pπij =

{
1 if π(j) = i
0 otherwise

We can then define the vector of variables π(x) := Pπx and π(xi) := xπ(i).
Note that, if we permute the variables in this problem, we do not need to per-
mute the objective function vector, since it is a vector of ones. This means that
the objective function value of a solution is always retained when we permute
this solution. We use the notion of permutations for the following definitions:

Definition 6.1. We say that a permutation group Γ ∈ Πqn acts on a set of
indices S if

i) the identity permutation (π(x) = x) is in Γ,
ii) for all permutations π ∈ Γ, we have that their inverse π−1 is also in Γ,
iii) for all i ∈ S, we have that π(i) ∈ S for all π ∈ Γ.

Note that the permutation group Πqn acts on Iq
n

. However, a permutation
group Γ can be a strict subset of Πqn . We consider the symmetric group G:

Definition 6.2. For any instance of FPP, IFPP or HDC, let G ⊆ Πqn denote
the symmetric group of the instance, defined by G := {π ∈ Πqn |π(x) ∈ F ∀x ∈
F}. Two feasible solutions x and π(x) are called isomorphic if π ∈ G.

19

Note that the identity permutation maps a feasible solution to itself, so it
is in G. Furthermore, if a permutation π ∈ G maps one feasible solution to
another feasible solution with the same objective value, the inverse is also true,
so π−1 ∈ G. Finally, G is defined for Iq

n

, so we have that for all i ∈ Iqn , π(i) ∈
Iq

n

. Therefore, all requirements for a permutation group are met by the group
G.

So, for any x ∈ F , there is another feasible solution for every π ∈ G. This
also means that there can be many optimal solutions. We demonstrate this in
the following example:

Example 6.1. Consider the instance IFPP3(1, 1). We can write this problem
as the following ILP formulation:

minx∈{0,1}3 x1 + x2 + x3

s.t. x1 + x2 ≥ 1
x1 + x3 ≥ 1
x2 + x3 ≥ 1.

where x1 = [0], x2 = [1] and x3 = [2].

It can be easily seen that the feasible solutions to this problem are [0, 1, 1]>,
[1, 0, 1]>, [1, 1, 0]> and [1, 1, 1]> with objective values 2, 2, 2 and 3, respectively.

Now, consider the permutations (123), (132), (213), (231), (312) and (321).
If we permute the indices of the variables in x according to any of these permuta-
tions, each of the feasible solutions will remain feasible with the same objective
value. Therefore, all these permutations belong to the symmetric group G of
this instance. Note that G = Πqn here, but not in general.

The existence of many isomorphic solutions in an ILP can really confound
the optimization process, since we do not know if a solution is optimal until we
have considered all solutions. Computing the symmetric group G is an NP-hard
problem in general, and often harder than solving the actual instance [28]. A
group that is easier to calculate is the formulation group. To define this group,
we first define permutations on the constraints.

Consider the constraint matrix A ∈ Rm×qn . A permutation σ is a bijection
from the set of row indices of A, denoted by Im, to itself. Note that for instances
of FPP, IFPP or HDC, we have that m = qn, so we have that σ ∈ Πqn . For
each σ ∈ Πqn , we can create the matrix Pσ such that σ(A) := PσA. Note that,
if we permute the rows of A, we do not need to apply the same permutation to
the vector b, since it is a vector of ones e. We can use the notion of constraint
permutations to define the formulation group G̃.

20

Definition 6.3. For any instance of FPP, IFPP or HDC, let G̃ ⊆ Πqn denote
the formulation group of the instance, defined by G̃ := {π ∈ Πqn | ∃σ ∈ Πqn ,
such that PσAPπ = A}.

We also define the constraint formulation group C := {σ ∈ Πqn | ∃π ∈ Πqn ,
such that PσAPπ = A}.

We can see here that for the identity permutation, π, the identity permuta-
tion σ gives IAI = A, so the identity permutation π is in G̃. Furthermore,
it follows directly from PσAPπ = A that Pσ

−1

APπ
−1

= A. Therefore, if
π ∈ G̃, π−1 ∈ G̃. Thirdly, G̃ is defined on the full set Iq

n

, so it is a permu-
tation group. The reasoning for C being a permutation group is similar.

The formulation group is in general easier to calculate than the symmetric
group, and can be generated by software such as Nauty. We can see that the
formulation group is a supergroup of the symmetric group in the following way:
Let x ∈ F , and π ∈ G̃. Then by definition of G̃, there exists a permutation
σ ∈ Πqn , such that PσAPπ = A. Since x ∈ F , we have that Ax ≥ e and
PσAPπx ≥ e → A(Pπx) ≥ e, so π(x) ∈ F , which implies π ∈ G.

Given a permutation group, we can define what variables or constraints can
be mapped to what other variables or constraints. We therefore define the orbit:

Definition 6.4. The orbit of a variable xi under the permutation group Γ ⊆
Πqn acting on x is denoted by orb(xi,Γ) := {xj | ∃π ∈ Γ : π(xi) = j}.

The orbit of a constraint ai under the permutation group Γ ⊆ Πqn acting
on A is denoted by orb(ai,Γ) := {aj | ∃σ ∈ Γ : σ(ai) = j}.

For variables, we have that for any permutation group Γ, if xj ∈ orb(xi,Γ),
then xi ∈ orb(xj ,Γ), since the inverse of a permutation π ∈ Γ is also in Γ.
Similarly this holds for different constraints ai and aj . This means that we can
partition the set of all variables or constraints according to the different orbits
the variables or constraints are in. We denote these partitions by G(A,Γ) and
C(A,Γ).

In particular, we consider the orbital partitions for the permutation groups
G and C. For instances of FPP, IFPP, and HDC, this partition is actually
pretty straightforward:

Theorem 6.1. Given an instance of FPP, IFPP or HDC, we have that xj ∈
orb(xi,G)∀ i, j ∈ Iqn and aj ∈ orb(ai, C)∀ i, j ∈ Iq

n

.

Proof. We have that the |SH(w,R)| is equal for all w ∈ Fnq . Therefore, a

permutation exists such that if v ∈ SH(w, r), π(v) ∈ SH(π(w), r)∀ v, w ∈ Fnq .
Since all distances between the words are preserved, this means that the sets

21

that are covered by each word also stay the same. This means that there is a
σ ∈ Πqn such that PσAPπ = A, and we can construct a permutation π ∈ G
such that w is mapped to any word in Fnq .

This theorem implies that |G(A,G)| = |C(A, C)| = 1. We will use this proof
to formulate the symmetry-shrunken LP relaxation of our problem in Section 7.

7 The symmetry-shrunken Sherali-Adams relax-
ation

In order to create lower bounds for our open instances, we can use relaxations
to the ILP formulation in Section 3. A simple LP relaxation gives us the value
of the sphere-packing bound. You can easily check that the non integer variable
vector [qn/

∑n
r=R((q− 1)r ∗

(
n
r

)
), . . . , qn/

∑n
r=R((q− 1)r ∗

(
n
r

)
)]T is covering for

the LP relaxation. Therefore, this relaxation does not improve the bounds we
already know.

We can, however, relax the ILP formulation in ways that give tighter bounds.
Some of these relaxations, such as the Lovász-Schrijver (LS) relaxation and
the Lasserre relaxation, require semi-definite programming, while the Sherali-
Adams (SA) relaxation does not [21]. The LS, Lasserre and SA relaxation
generate a lot of extra variables, so semi-definite programming can still require
a lot of computation time, while a linear program usually still finds the optimal
value very fast. We therefore use the SA relaxation to provide lower bounds in
this paper.

We denote the polytope that is the convex hull of the points in F , the
feasible region, by P := conv(F). Since this is a bounded region, we know from
the maximum principle that the optimal solution is one of the vertices of the
convex hull, and thus is an integer solution, since F ⊂ {0, 1}qn . Since P is
also convex, we can find its optimum by a linear program, which can be solved
efficiently.

Unfortunately, finding the linear programming formulation of P can be very
time consuming. If we consider the linear programming relaxation of our prob-
lem, we get the following polytope:

P 0 := {x ∈ [0, 1]q
n

|Ax ≥ e}.

This polyhedron P 0 is generally not equal to P . We will show this in the
next example:

22

Example 7.1. We consider again the instance IFPP3(1, 1). We know that P =
conv([0, 1, 1]>, [1, 0, 1]>, [1, 1, 0]T , [1, 1, 1]>). However, this polyhedron is not
equal to P 0, the polyhedron generated by the linear relaxation of IFPP3(1, 1).

Left: P0. Right: P .

In order to remove P 0/P from the polytope, we can use Gomory cuts [9],

which replace a constraint
∑qn

i=1 aixi ≥ b with all ai integer, that is valid for P 0,

by the constraint
∑qn

i=1 aixi ≥ dbe to form a new polyhedron P 1. In Example
7.1, we can replace the constraint x1 + x2 + x3 ≥ 1.5 with x1 + x2 + x3 ≥ 2 to
obtain P 1 = P from P 0. The problem is that, when an ILP problem is very
symmetric, we may need a large amount of such cuts to find P from P0. If we

perform a Gomory cut
∑qn

i=1 aixi ≥ dbe, there may be many π ∈ G, such that∑qn

i=1 aiπ(xi) < dbe, which means the solutions π(x) are not eliminated by the
cut. Since x and π(x) have the same objective function value, this means the
cut does not increase our lower bound. We may therefore need to perform such
a cut many times. Is it often better to consider the isomorphism groups before
cutting, for example by orbitopal fixing [13].

There are other ways to decrease the size of a symmetric problem. Because
the FPP, IFPP and HDC instances have a lot of symmetry, we can actually
reduce the LP formulation. We call this the symmetry-shrunken LP, which is
due to [28]:

Theorem 7.1. Given an LP formulation where G(A,G) is the orbital par-
tition of the variables with respect to the symmetric group of variables, and
C(A, C) is the orbital partition of the constraints with respect to the symmetric
group acting on the constraints, one can construct an LP formulation containing
|G(A,G)| (the number of non-isomorphic variables) many variables and |C(A, C)|
(the number of non-isomorphic constraints) many constraints that has the same
optimal objective value.

From this theorem and the result from Theorem 6.1, we know the following:

23

Corollary 7.1.1. For an instance of FPP, IFPP or HDC, we can construct an
LP problem with one variable and one constraint, that has the same objective
value as the regular LP relaxation of the problem.

We can create the symmetry-shrunken LP from an LP by replacing all xj
terms by terms of a new variable yi, where i = min arg(orb(xj ,G)), the minimal
index of all variables in the orbit of xj . This results in an LP where all variables
xj that can be permuted to each other while retaining the optimal solution are
substituted by the same variable. We can do the same for the constraints in A,
and permutation group C. We will show this in the next example:

Example 7.2. Consider again the instance IFPP3(1, 1). The constraint matrix
for the LP relaxation of this problem looks as follows:

A =

0 1 1
1 0 1
1 1 0


We have seen in Example 6.1 that G = Πqn . We also have that C = Πqn , since
PσAPπ = A for all σ = π, π ∈ Πqn for this instance. If we replace all variables
in the same orbit, we get the following LP problem:

miny∈[0,1] 3y1

s.t. 2yi ≥ 1.

Note that the optimal solution to this relaxation is 1.5, which is indeed equal
to the optimal value of the original LP relaxation. We can map the solution of
the symmetry-shrunken LP to that of the original LP relaxation by setting xj
equal to yi for all xj ∈ orb(xi,G), which gives us the variable vector [12 ,

1
2 ,

1
2]>.

We can create such a symmetry-shrunken LP for the Sherali-Adams relax-
ation. This is a so-called lift and project method, that consists of a hierarchy
of relaxation polytopes P t, such that P 0 ⊇ P 1 ⊇ · · · ⊇ P q

n−1 ⊇ P q
n

= P . For
proofs of these relations, see [30]. Of course, unless P = NP, generating the
level qn relaxation takes exponential time. However, we may be able to generate
intermediate relaxation levels to find bounds that are tighter than those found
so far. We can construct and solve the LP relaxation corresponding to P t as
follows:

Step 1:
We take as P 0 the homogeneous linear relaxation polytope that is symmetry-
shrunken with respect to its constraints: {x ∈ [0, 1]q

n | − 1 + a1 ≥ 0}.

24

Step 2:
For every J ⊆ Iqn , with |J | = t and J � π(J)∀π ∈ stab(a1,G)

For every partition (J0, J1) of J , such that J0 � π(J0)∀π ∈ stab(a1,G)
and J1 � π(J1)∀π ∈ stab(J0,G)∪ stab(a1,G).

Generate the constraint (−y0 + cyi)(
∏
i∈J0 xi)(

∏
j∈J1 1− xj). (lift)

Step 3:
For every S ⊆ Iq

n

which has a term
∏
i∈S xi in one of the constraints, replace∏

i∈S xi by ySL , with SL such that SL � π(SL)∀π ∈ G, ∃π ∈ G : π(SL) = S.
(project)

Step 4:
Solve the linear relaxation over P t, and then set xi to y1 ∀ i ∈ Iq

n

.

Here the permutation group stab(a1,G) denotes the set of permutations in
G that map all variables to a variable with the same coefficient in a1. The
permutation group stab(J1,G) is the set of permutations in G that map each
element in J1 to another element in J1. The symbol � denotes a lexicographical
ordering. We have that S � T , with the elements of S and T ordered from small
to large, if there is a number k, such that the first k elements in T are as least as
large as the first k elements in S, and there are no more than k first elements of S
that are as least as large as their corresponding elements in T . We then say that
S is lexicographically smaller than T . E.g. the sets {1, 3, 6}, {1, 4, 5}, {2, 3, 4}
are lexicographic in this order: {1, 3, 6} � {1, 4, 5} � {2, 3, 4}.

This method is called a lift an project method because we lift our constraints
to a higher dimensional space by multiplying them with variables. This results
in non-linear constraints, which are NP-hard to solve. Therefore, we project
this space back onto a linear space by replacing the monomials

∏
i∈S xi with

ySL . This means that the linear program we solve is a simulation of a non-linear
program. However, we can solve it in polynomial time, since we do not enforce
ySL =

∏
i∈S xi.

We do not actually know the symmetric group G. However, we do know the
formulation group G̃, and we that G ⊆ G̃. Therefore, stab(a1,G) ⊆ stab(a1, G̃),
so the partitions J we find using the formulation group is a subset of those we
could find using the symmetric group.

We refer to the relaxation using polytope P t as the level t SA relaxation.
The generation of an SA relaxation takes longer than solving it. Since the level
t SA relaxation has

(
qn

t

)
extra variables and 2 ∗

(
qn

t

)
constraints, generating

high level relaxations is usually not computationally tractable. That is why the
symmetry-shrunken LP is a useful method for this relaxation. We will show
how the relaxation works in the next example:

Example 7.3. Consider again the instance IFPP3(1, 1). We will construct

25

and solve the level 1 SA relaxation for this problem.

Step 1:
We take the LP formulation Example 7.2 and remove all constraints but the
first to get the polytope P0.

Step 2:
Note that G = Πqn . We have that stab(a1,G) = stab({2, 3},G) = {(123), (132)}.
Since {2} � {3}, we have two options for J : {1} and {2}. This then leads to
four different partition possibilities:

J0 = {1} J1 = ∅
J0 = ∅ J1 = {1}
J0 = {2} J1 = ∅
J0 = ∅ J1 = {2}.

We then get the following constraints:

(x2 + x3 − 1)x1 ≥ 0

(x2 + x3 − 1)(1− x1) ≥ 0

(x2 + x3 − 1)x2 ≥ 0

(x2 + x3 − 1)(1− x2) ≥ 0.

Step 3:
We have that {1} � {2} � {3} and {1, 2} � {1, 3} � {2, 3}. We can therefore
replace the nonlinear terms in the constraints to get the following linear system:

miny∈[0,1]2 3y1
s.t. −y1 + 2y12 ≥ 0

3y1 − 2y12 ≥ 1
y12 ≥ 0
2y1 − y12 ≥ 1.

Step 4:
The optimal solutions for the problem in Step 3 is y1 = 2

3 , y12 = 1
3 . We can

project this solution onto the space [0, 1]3 by setting x1 = x2 = x3 = y1 to get
the solution [23 ,

2
3 ,

2
3]> with the optimal solution value 2.

Note that the optimal solution to the level 1 relaxation gives a tighter bound
for this instance than the regular LP-relaxation. In fact, the relaxation gives us
the optimal value for the problem. We can also see that this formulation has
got only 2 variables and 4 constraints, where the regular level 1 SA relaxation
would have 6 variables and 18 constraints. In Section 9, we will use this method
to improve the bounds for some open cases of IFPP and HDC.

26

8 Improving upper bounds for open cases

Main results: See Appendices A, B and C.

In this section, we do not look at the open cases for IFPP2, since these
are equivalent to FPP2, the binary covering problem. We do improve bounds
for the open cases of HDC2, with n > 8. For both IFPP3 and HDC3, we
have open cases for n > 5. In order to generate tight upper bounds for these
instances, we use a genetic algorithm, which simulates natural evolution by cre-
ating genetic representation of codes, determining their fitness and generating
offspring between two such codes if they are fit. We repeat this procedure for a
number of iterations, called generations in this context.

The genetic representation of a code C is simply a vector of length qn, with
binary variables corresponding to the lexicographically ordered words in Fnq ,
where a value of 1 indicates that the corresponding word is in the code. We call
the collection of all codes in the program the population, which we denote by P.

Since we are looking for minimum cardinality codes, we can choose the car-
dinality of a code as its fitness. However, if we allow only covering codes in the
population, it is hard to improve on existing solution. Therefore, we slightly
modify the definition of fitness in the program:

For each code C ∈ P, we define S(C) ⊆ Fnq to be the set of all words covered
by C. The fitness, f(C) of each code is then defined as f(C) := |C| + |Fnq | −
|S(C)|. A fitness implies that we can use the code C to construct a covering
code of cardinality f , since we can add a word to the code for each of the
|Fnq | − |S(C)| uncovered words in order to cover all of Fnq . This means that a
code C corresponds to a covering code with cardinality f(C).

Formally, the algorithm goes as follows:

Step 1:
We initialize the time and set the generation number to 0. We then generate
a population P by a randomized greedy algorithm. Furthermore, for each code
C ∈ P and each word w ∈ Fnq , we define the score ∆wf(C) of each word to be
the change in fitness of C if we were to add or remove w from C.

Step 2:
We select the fittest codes from P, with exception of the ’escape probability’ ε of
selecting a code with a higher fitness to avoid getting stuck in a local optimum
too fast. On the selected codes, we perform the following operations:

Reproduction
We select two of the fittest codes, parent codes C1, C2 and take a threshold

27

ω. Then, for each of the codes, we select the words w with |∆wf(C1)| > ω or
|∆wf(C2)| > ω. These words either have a large negative score, which means
that either they can cover a lot of uncovered words, or they have a large positive
score, which means they are the unique covering word for a lot of words in Fnq .
These words represent strong genes in the parent codes. We construct a new
code, the offspring C∗, consisting of the strong genes from both parents. We
then perform a randomized greedy algorithm to improve this new code to a
local optimum. We calculate f(C∗) and ∆wf(C∗) and then C∗ is added to the
population.

Mutation
Since all initial codes in P and all codes from reproduction are local optima, we
perform some mutations in the codes in order to break free from these optima.
We take a fit code, and add or remove the word with the lowest score. If this
does not directly lead to an improvement, we add or remove another word from
the code to make sure we do not reverse the operation in the next mutation.
The new code is then added to the population.

Step 3:
We select the codes that move on to the next generation through tournament
selection. This works as follows: we randomly pair all codes in the population.
For each pair of codes, we remove the code with the highest fitness from the
population. In case of a tie, a winner is randomly decided. The best code
in the population therefore always stays in the population. However, words
with higher fitness still have a possibility of survival is they are matches against
another weaker code. This way, we avoid getting stuck in local optima too soon.

Step 4:
We increment the generation number and check if there is any code in the new
population that has an improved upper bound compared to the best upper
bound found so far. If this value is equal to the best lower bound known, or
if the time limit or generation limit has passed, we terminate the algorithm.
Otherwise, we go to Step 2.

This model has got a few parameters that can be decided by the user, such
as maximum population size, the time limit and maximum number of genera-
tions, the number of reproductions and mutations in each generation and the
parameters ε and ω. The default settings for the program are in the source code,
which can be found in Appendix D, but they can be tinkered with to produce
better approximations for certain instances.

Using this algorithm, we are able to significantly improve the best known
upper bounds. For each instance, we let the program run for a maximum of
3000 seconds on a 2.3 GHz Intel Core i5 MacBook. However, most of the best
solutions so far were found in considerably less time. The running times for

28

non-optimal solutions found are tabulated below:

upper bound time elapsed (s)
HDC2(10, 2) 40 22.77
HDC2(11, 2) 64 146, 52
HDC2(11, 3) 28 0.70
HDC2(12, 2) 106 2961.94
HDC2(12, 3) 44 121.37
HDC2(12, 4) 16 32.25
HDC2(12, 5) 14 531.40
HDC2(12, 6) 12 11.67
HDC2(13, 3) 76 607.38
HDC2(13, 4) 26 6.27
HDC2(13, 5) 20 5.98
HDC2(13, 6) 16 5.95

HDC3(6, 2) 23 0.91
HDC3(6, 3) 12 0.37
HDC3(6, 5) 10 217.35
HDC3(7, 2) 45 5.37
HDC3(7, 4) 13 1.82
HDC3(7, 5) 10 18, 10
HDC3(7, 6) 12 74, 18
HDC3(8, 2) 146 13, 22
HDC3(8, 4) 21 21, 96
HDC3(8, 5) 14 12, 49
HDC3(8, 6) 15 12, 32
HDC3(8, 7) 21 12, 31

Table: Best found upper bounds using the genetic algorithm.

Since the algorithm is random, these results are not guaranteed within the
time given in the table. On the other hand, new runs of the same length may
improve the best upper bound found. From the table, one can easily see in
which instances the upper bound found by the greedy algorithm was improved
and in which instances it was not. The time to create the adjacency matrix is
not included in the time given in the table, but can be calculated in reasonable
time for all instances in the table.

9 Improving lower bounds for open cases

In order to establish better lower bounds, we can use techniques that reduce the
high level of symmetry in the problem, which is described in Section 6. We use

29

two different approaches. For small cardinality codes, we enumerate the number
of unique codes up to isomorphism, and then check whether one is covering for
the instance. If not, we can improve the lower bound. This is particularly
useful for the different instances of HDC2, since we can split the corresponding
graphs into subgraphs with smaller lower bounds. For larger codes, enumerating
all these codes is not computationally tractable, so we use the Sherali-Adams
relaxation described in Section 7.

In order to strengthen the relaxation, we can add some extra valid con-
straints. We can set integrality constraints for some of the values of ySL by
introducing the variables YSL = ySL ∗ |orb(SL,G)| for all SL : |S| = 2. Since
orbit sizes may be large, setting this equality may cause the problem to become
numerically unstable. We therefore use the CPLEX solver, which has numerical
verification, and set the program to focus on numerical stability.

We can add extra constraints that bound the orbit representatives of size 2
from below by using the binomial relation between the variables. For example, if

we have that y{1} = m, then this means that
∑qn

i=1 xi ≥ m, which in turn implies∑qn

i=2

∑i−1
j=1 xixj ≥

(
m
2

)
. Since for each term xixj , we have a corresponding yS ,

we can add the following constraint to the relaxation:

∑
SL∈2S

YSL ≥
(
y1 ∗ |orb({1},G)

2

)
.

More generally, for orbit representatives of size k, we have that

∑
SL⊆V,|SL|=k

YSL ≥
(
y1 ∗ |orb({1},G)

k

)
.

In order to keep computation of the orbits tractable for large instances, we
apply the level 1 Sherali-Adams relaxation to our open problems. This means
that we only need the first constraint for our relaxation, since cross terms of
more than two variables do not occur in the level 1 relaxation. However, this
constraint is nonlinear. We can linearize it by using dummy constraints di, such
that:

y1 ∗ |orb({1},G) =

ub∑
i=1

di,

where ub is the best known upper bound for the instance. We order the
dummy variables, such that d1 ≥ d2 ≥ . . . ≥ dub. We can then replace the
nonlinear constraint by:

30

∑
SL∈2S

YSL =

ub∑
i=1

(i− 1) ∗ di.

Since we have that
∑`
i=1(i − 1) =

(
`
2

)
, the constraints are equivalent. This

type of constraints has been shown to be effective in the Sherali-Adams relax-
ation [28].

For the level 1 relaxation, the different orbit representatives are very easy to
calculate. If we take a1 = A1, then the different orbits under stab(a1,G) can be
represented by the lexicographically minimal words with weight z(w) = i, for
all i ∈ {0, . . . , n}.

The orbit representatives for all sets S = {s1, s2} can simply be defined
by the distance between s1 and s2 in the graph. For example, for the graph
corresponding to HDCq(n, 1), this distance is equal to the Hamming distance
dH(s1, s2).

In order to calculate the different possible sets J , we use Nauty. We calculate
the orbits of the sets of cross terms using Sage. The code used for MATLAB
can be found in Appendix D. The results for this relaxation, the time needed to
calculate the level 1 Sherali-Adams bound and the comparison to the sphere-
packing bound is shown in the table below:

LP SA time elapsed (s)
HDC3(6, 1) 61 62 0.07
HDC3(7, 1) 157 158 0.11
HDC3(8, 1) 411 412 0.32
HDC3(8, 2) 59 60 0.10

Table: Linear and Sherali-Adams relaxation bounds.

We can see that the level 1 Sherali-Adams bound is a slight improvement
compared to the linear relaxation bound. However, for HDC3, we do not have
any recursive bounds between different instances, so the level 1 Sherali-Adams
bound is the best bound found so far. Furthermore, the bound can be calculated
very quickly, even for large instances. This means that we can slightly improve
the bounds for instances of sizes that are hard to improve otherwise.

We note that the Sherali-Adams relaxation does not improve the bounds
for cases with R > 2. Since orbits of sets of size 2 can be defined by their
inner distance, a higher radius R implies that there are fewer orbits, which
may explain why the relaxation is weaker for these cases. This also means that
the Sherali-Adams relaxation is more useful for instances of HDC than IFPP ,
since vertices in graphs corresponding to IFPP with q > 2 never have a distance
higher than 2.

31

10 Conclusion and recommendations

We generalize the notion of the Inverse Football Pool problem by Brink [2], to
a wider class of problems, which we call the Inverse Football Pool Problem
(IFPP) and the Hamming Distance Covering problem (HDC). There are
many relations between the different problems and the original Football Pool
Problem (FPP), which we use to determine combinatorial lower and upper
bounds for the new instances. We give a few properties of the symmetric aspects
of FPP , IFPP and HDC, and use this symmetry to reduce the Sherali-Adams
relaxation formulation of the problems. We use this relaxation to improve the
lower bounds on hard cases. For the upper bounds of these cases, we use a
genetic algorithm.

This thesis contributes to the existing literature in the following ways:

- We generalize the football pool problem to a more general class of covering
problems corresponding to graphs equipped with the Hamming distance, which
is defined for all sets of covering radii S ⊆ {0, . . . , n}, according to Definition 5.3.
In particular, we consider the sets S := {r ∈ {0, . . . , n}|r ≥ R} ∀R ∈ {0, . . . , n}
and the sets S with |S| = 1, which we label the Inverse Football Pool Problem
and the Hamming Distance Covering Problem, respectively. However, other
sets S can be studied in future research. From the perspective of discrete
optimization, we can check how the minimum covering and maximum pack-
ing cardinalities corresponding to these graphs relate to each other. Maybe
these cardinalities can be ordered corresponding to the vertex degrees of their
graphs, which may help in finding useful recursive lower bounds for HDCq with
q > 2. Note that we can generalize the definition of duo codes similarly to
the generalization in Definition 5.3, which leads to another class of instances
with highly nontrivial minimum covering cardinalities. From the perspective of
graph theory, the properties of this class of graphs can be studied, and sufficient
conditions to define a graph corresponding to an alphabet equipped with the
Hamming distance can be formulated.

- Several relations between FPP , IFPP and HDC are defined, which allows
for general lower and upper bounds for a lot of instances. In particular, we
find equivalence between the instances HDC2(n,R) and HDC2(n− 1, {R,R−
1}), which allows us to study smaller subgraphs of some large instances, which
makes them easier to solve. The result shows an interesting relation between
isomorphic disconnected graphs and bipartite graphs.

- We introduce the use of duo codes, that provide better combinatorial
bounds than direct multiplication of codes. This method may be applicable
to more general Hamming distance covering problems, and the bounds for rela-
tively small instances are still not closed, which could be improved in the future.

- This thesis provides a basic introduction to the symmetry in a graph

32

equipped with the Hamming distance. Some straightforward orbits are ex-
plained, and the symmetry-shrunken LP for these graphs is explained. Since
this class of graphs is highly symmetric, some more research could be done
on the precise structures of the underlying symmetric groups and formulation
groups, and their relations to the group corresponding to other graphs in the
class.

- The symmetry-shrunken level 1 Sherali-Adams relaxation is tested for new
problem instances. An easy formulation of the level 1 relaxation is given, and
the formulation is even smaller than that in [28] since we bound the number
of dummy variables. The results show that the bound improves more when
there is a large number of orbits of sets of cardinality 2, which corresponds to a
small covering radius R. Due to storage memory issues, the writer was unable
to generate any larger adjacency matrices, but lower bounds of larger instances
will very likely be improved by using the level 1 Sherali-Adams relaxation as
well. Of course, the bounds may also be improved by using higher levels of the
Sherali Adams relaxation. The Sherali-Adams relaxation is not formulated for
lower bounds of duo code coverings, but this could be studied in future research.

The source code for the genetic algorithm and the Sherali-Adams relaxation,
as well as the source codes used to create adjacency matrices and to generate
greedy solutions, is in Appendix D, and can be used to provide bounds for other
instances or, with minor alterations, for other problems.

33

11 Open source software used

Nauty: McKay, B.D. and Piperno, A., 2013. Practical Graph Isomorphism, II.
Journal of Symbolic Computation. http://cs.anu.edu.au/~bdm/nauty/.

Sage: Stein, W.A. et al., 2014. Sage Mathematics Software (Version 6.0), The
Sage Development Team. http://www.sagemath.org.

Matgraph: Scheinerman, E.R., Matgraph: A MATLAB Toolbox for Graph The-
ory. http://www.ams.jhu.edu/~ers/matgraph/

34

http://cs.anu.edu.au/~bdm/nauty/
http://www.sagemath.org
http://www.ams.jhu.edu/~ers/matgraph/

12 References

[1] Barg, A., 1993. At the dawn of the theory of codes. The Mathematical Intel-
ligencer 15 (1), 20-6.

[2] Brink, D., 2011. The Inverse Football Pool Problem. Journal of Integer Se-
quences 14.

[3] Clayton, R.F., 1987. Multiple packings and coverings in algebraic coding
theory. Doctoral dissertation, University of California, Los Angeles.

[4] Cohen, G.D., Lobstein, A.C. and Sloane, N.J.A., 1986. Further Results on
the Covering Radius of Codes. IEEE Transactions on Information Theory
32 (5), 680-94.

[5] Everett, H., 1963. Generalized Lagrange multiplier method for solving prob-
lems of optimum allocation of resources. Operations Research 11 (3), 399-
417.

[6] Feige, U., 1998. A threshold of ln n for approximating set cover. Journal of
the ACM 45.4, 643-52.

[7] Golay, M.J.E., 1949. Notes on digital coding. Proceedings of the I.R.E. 37,
657.

[8] Gommard, G. and Plagne, A., 2003. K5(7, 3) ≤ 100. Journal of Combinato-
rial Theory Series A 104 (2), 365-70.

[9] Gomory, R.E., 1958. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society 64 (5), 275-8.

[10] Hämäläinen, H.O., Honkala, I.S., Kaikkonen, M.K. and Litsyn, S.N., 1993.
Bounds for binary multiple covering codes. Designs, Codes and Cryptogra-
phy 3 (3), 251-75.

[11] Hämäläinen, H.O., Honkala, I.S., Litsyn, S.N., Österg̊ard, P.R.J., 1995.
Football pools - A game for mathematicians. The American Mathematical
Monthly, 102 (7), 579-88.

[12] Hämäläinen, H.O. and Rankinen, S., 1991. Upper bounds for football pool
problems and mixed covering codes. Journal of Combinatorial Theory, Series
A, 56 (1) 84-95.

[13] Kaibel, V., Peinhardt, M., Pfetsch, M.E., 2007. Orbitopal fixing 74-88.

[14] Kalbfleisch, J.G. and Stanton, R.G., 1969. A combinatorial problem in
matching. Journal of the London Mathematical Society 1.1, 60-4.

[15] Kamps, H.J.L, Van Lint, J.H., 1967. The football pool problem for 5
matches. Journal of Combinatorial Theory 3 (4), 315-25.

35

[16] Karp, R.M., 1972. Reducibility Among Combinatorial Problems Complexity
of Computer Computations, 85-103

[17] Kolev, E. and Landgev, I., 1994. On some mixed covering codes of small
length. Algebraic Coding, 38-50.

[18] Korte, B. and Vygen, J., 2012. Combinatorial Optimization: Theory and
Algorithms 5th ed.

[19] Van Laarhoven, P.J.M., Aarts, E.H.L, Van Lint, J.H., Wille, L.T., 1989.
New upper bounds for the football pool problem for 6, 7 and 8 matches.
Journal of Combinatorial Theory, Series A 52 (2), 304-12.

[20] Lasserre, J.B., 2001. An explicit exact SDP relaxation for nonlinear 0-1
programs. Lecture Notes in Computer Science 2081, 293-303.

[21] Laurent, M., 2003. A comparison of the Sherali-Adams, Lovász-Schrijver
and Lasserre relaxations for 0-1 programming. Mathematics of Operations
Research 28 (3), 470-96.

[22] Linderoth, J., Margot, F., Thain, G., 2009. Improving bounds on the foot-
ball pool problem by integer programming and high-throughput computing.
INFORMS Journal on Computing 21 (3), 445-57.

[23] Van Lint, J.H., 1975. A survey of perfect codes. Journal of Mathematics 5
(2).

[24] Van Lint, J.H. and Van Wee, G.J., 1991. Generalized bounds on bina-
ry/ternary mixed packing and covering codes. Journal of Combinatorial The-
ory, Series A, 57 (1), 130-43.

[25] Lovász, L. and Schrijver, A., 1991. Cones of matrices and set-functions and
0-1 optimization. SIAM Journal on Optimization 1, 166-90.

[26] Österg̊ard, P.R.J. and Pottonen, O., 2009. The perfect binary one-error-
correcting codes of length 15: Part I. Classification. IEEE Transactions on
Information Theory 55, 4657-60.

[27] Österg̊ard, P.R.J., and Riihonen, T., 2003. A Covering Problem for Tori.
Annals of Combinatorics 7, 357-63.

[28] Ostrowski, J., 2012. Using symmetry to optimize over the Sherali-Adams
relaxation. Combinatorial Optimization 59-70.

[29] Riihonen, T., 2002. How to Gamble 0 Correct in Football Pools. Special
Project in Communications, Helsinki University of Technology.

[30] Sherali, H.D. and Adams, W.P., 1990. A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Discrete Mathematics 3, 411-30.

36

[31] Sloane, N.J.A., The On-Line Encyclopedia of Integer Sequences, published
at http://oeis.org/ .

[32] Stanton, R.G., Horton, J.D. and Kalbfleisch, J.G., 1969. Covering theorems
for vectors with special reference to the case of four and five components.
Journal of the London Mathematical Society 2.1, 493-9.

[33] Taussky, O. and Todd, J., 1948. Covering theorems for groups. Annales de
la Société Polonaise de Mathématique 21, 303-5.

[34] Van Wee, G.J., Cohen, G.D., and Litsyn, S.N., 1991. A note on perfect
multiple coverings of the Hamming space. IEEE Transactions on Information
Theory 37 (3), 678-82.

[35] Wille, L.T., 1987. The football pool problem on six matches. Journal of
Combinatorial Theory, Series A 45, 171-7.

37

13 Appendix A: Tables for IFPP

Tables for T2(n,R):

R = 0 R = 1 R = 2 R = 3 R = 4 R = 5 R = 6
n = 1 1a 2b − − − − −
n = 2 1a 2 4b − − − −
n = 3 1a 2 2c 8b − − −
n = 4 1a 2 2 4 16b − −
n = 5 1a 2 2 2c 7 32b −
n = 6 1a 2 2 2 4 12 64b

n = 7 1a 2 2 2 2c 7 16
n = 8 1a 2 2 2 2 4 12
n = 9 1a 2 2 2 2 2c 7
n = 10 1a 2 2 2 2 2 4
n = 11 1a 2 2 2 2 2 2c

R = 7 R = 8 R = 9 R = 10 R = 11 R = 12 R = 13
n = 7 128b − − − − − −
n = 8 32 256b − − − − −
n = 9 16 62 512b − − − −
n = 10 12 24-30 107-120 1024b − − −
n = 11 7 15-16 37-44 180-192 2048b − −
n = 12 4 11-12 18-28 62-78 342-380 4096b −
n = 13 2c 7 12-16 28-42 97-128 598-704 8192b

Perfect codes are printed in bold.

a : Tq(n, 0) = 1.
b : T2(n, n) = 2n.
c : Theorem 4.3.

All values without superscript follow directly from Theorem 4.2.

38

Tables for T3(n,R):

R = 0 R = 1 R = 2 R = 3 R = 4 R = 5 R = 6
n = 1 1a 2b − − − − −
n = 2 1a 2 3b − − − −
n = 3 1a 2 2 5b − − −
n = 4 1a 2 2 3 8b − −
n = 5 1a 2 2 2 3 12b −
n = 6 1a 2 2 2 3 ∗6e 18b

n = 7 1a 2 2 2 2 3 ∗7-9e

n = 8 1a 2 2 2 2 3 3
n = 9 1a 2 2 2 2 2 3
n = 10 1a 2 2 2 2 2 3
n = 11 1a 2 2 2 2 2 2

R = 7 R = 8 R = 9 R = 10 R = 11 R = 12 R = 13
n = 7 29b − − − − − −
n = 8 d7-15e 44b − − − − −
n = 9 c4-6e c7-24e 66-68b − − − −
n = 10 3 c4-9e c10-36e 99-104b − − −
n = 11 3 3 c5-15e c14-54e 149-172b − −
n = 12 3 3 c4-6e c6-24e c19-72e 224-264b −
n = 13 2 3 3 c4-9e c8-36e c26-132e 336-408b

Perfect codes are printed in bold. Nontrivial optimization / relaxation results
are marked with an asterisk (*).

a : Tq(n, 0) = 1.
b : D. Brink: The Inverse Football Pool Problem [2].
c : Theorem 4.1.
d : Theorem 4.7.
e : Theorem 4.6.

All values without superscript follow directly from Corollary 4.5.1.

39

14 Appendix B: Tables for HDC

Tables for E2(n,R), published electronically as A230014 [31]:

R = 0 R = 1 R = 2 R = 3 R = 4 R = 5 R = 6
n = 1 2a 2a − − − − −
n = 2 4a 2b 4a − − − −
n = 3 8a 4 4 8a − − −
n = 4 16a 4b 4 4b 16a − −
n = 5 32a 8 6 6 8 32a −
n = 6 64a 14 8 6 8 14 64a

n = 7 128a 24 8 8 8 8 24
n = 8 256a 32b 16 8 8 8 16
n = 9 512a d64e 24 12 10 10 12
n = 10 1024a d124e 34-40∗ 16 12 10 12
n = 11 2048a d214-240e e48-64g e24-28∗ ∗16∗ ∗14∗ ∗14∗

n = 12 4096a c342-384e e74-106∗ e30-44∗ e14-16∗ ∗8-14∗ ∗8-12∗

n = 13 8192a d684-760e e124-176g e36-76∗ e22-26∗ e8-20∗ f6-16∗

R = 7 R = 8 R = 9 R = 10 R = 11 R = 12 R = 13
n = 7 128a − − − − − −
n = 8 32b 256a − − − − −
n = 9 24 d64e 512a − − − −
n = 10 16 34-40∗ 124e 1024a − − −
n = 11 ∗16∗ e24-28∗ e48-64g d214-240e 2048a − −
n = 12 ∗8-14∗ e14-16∗ e30-44∗ e74-106∗ c342-384e 4096a −
n = 13 f6-16∗ e8-20∗ e22-26∗ e36-76∗ e124-176g d684-760e 8192a

Perfect codes are printed in bold. Nontrivial optimization / relaxation results
are marked with an asterisk (*).

a : E2(n, 0) = E2(n, n) = 2n.
b : Theorem 5.3.
c : Eq(n,R) ≥ Kq(n,R).
d : Corollary 5.2.1.
e : Theorem 5.2.
f : Sphere-packing bound.
g : Eq(n,R) ≤ Dq(R, r) ∗Kq(n−R,R− r).

All values without superscript follow from straightforward CPLEX optimiza-
tion.

40

Tables for E3(n,R), published electronically as A238305 [31]:

R = 0 R = 1 R = 2 R = 3 R = 4 R = 5 R = 6
n = 1 3a 2b − − − − −
n = 2 9a 3 3b − − − −
n = 3 27a 6 4 5b − − −
n = 4 81a 14 6 5 8b − −
n = 5 243a 27 12 6 7 12b −
n = 6 729a c71-81g c15-23∗ ∗7-12∗ ∗7∗ ∗8-10∗ 18b

n = 7 2187a ∗158-219g f27-45∗ c11-18g ∗6-13∗ ∗5-10∗ d7-12∗

n = 8 6561a ∗412-558g ∗60-135e f15-48g c9-21∗ f4-14∗ f4-15∗

n = 9 19683a f1094-1458g f137-306g f30-102g c11-45g c6-35g f4-28g

n = 10 59049a f2953-3867g f329-729g f62-204g f18-90g c9-51g f5-31g

n = 11 177147a f8053-10935g f806-1971g f135-486g f34-180g f12-102g c9-72e

n = 12 531441a f22144-28431g f2014-4995g f302-1215e f68-405g f21-105g c10-93g

n = 13 1594323a f61321-83106g f5111-6561g f697-2835g f140-810g f39-315g f15-93g

R = 7 R = 8 R = 9 R = 10 R = 11 R = 12 R = 13
n = 7 29b − − − − − −
n = 8 f7-21∗ 44b − − − − −
n = 9 f5-30e f9-42e 66-68b − − − −
n = 10 f4-35e f6-45e f12-63e 99-104b − − −
n = 11 f5-42e f5-49e f7-70e f16-105e 149-172b − −
n = 12 f6-78e f5-49e f5-70e f8-100e f22-168e 224-264b −
n = 13 f9-126e f5-90e f5-77e f6-105e f10-150e f30-252e 336-408b

Perfect codes are printed in bold. Nontrivial optimization / relaxation results
are marked with an asterisk (*).

a : Eq(n, 0) = qn.
b : D. Brink: The Inverse Football Pool Problem [2].
c : Eq(n,R) ≥ Kq(n,R).
d : Eq(n,R) ≥ Tq(n,R).
e : Direct multiplication.
f : Sphere-packing bound.
g : Eq(n,R) ≤ Dq(R, r) ∗Kq(n−R,R− r).

All values without superscript follow from straightforward CPLEX optimiza-
tion.

41

15 Appendix C: Covering codes for non-trivial
instances

Codes are displayed by the numbers of their words in lexicographic ordering of
Fnq .

HDC2(9, 2), HDC2(9, 7) : 13, 16, 58, 83, 99, 119, 143, 185, 188, 194, 214,
230, 269, 272, 314, 339, 355, 375, 399, 441, 444, 450, 470, 486.

HDC2(9, 3), HDC2(9, 6) : 1, 105, 111, 113, 145, 178, 277, 367, 384, 404, 406,
463.

HDC2(9, 4), HDC2(9, 5) : 2, 9, 22, 154, 155, 182, 295, 329, 395, 419.

HDC2(10, 2), HDC2(10, 8) : 1, 5, 50, 96, 127, 147, 177, 222, 236, 240, 294,
332, 345, 349, 363, 391, 421, 436, 440, 458, 513, 517, 562, 608, 639, 659, 689,
734, 748, 752, 806, 844, 857, 861, 875, 903, 933, 948, 952, 970.

HDC2(10, 4), HDC2(10, 6) : 1, 2, 15, 16, 49, 50, 241, 242, 1009, 1010, 1023,
1024.

HDC2(10, 5) : 1, 2, 22, 97, 158, 513, 514, 534, 609, 670.

HDC2(11, 3), HDC(11, 8) : 2, 55, 61, 164, 255, 268, 301, 303, 390, 436, 519,
525, 1010, 1020, 1058, 1068, 1495, 1501, 1602, 1617, 1753, 1760, 1808, 1900,
1999, 2016, 2022, 2033.

HDC2(11, 4), HDC2(11, 7) : 1, 2, 7, 8, 31, 32, 63, 64, 255, 256, 1023, 1024,
1025, 1026, 2047, 2048.

HDC2(11, 5), HDC2(11, 6) : 1, 19, 20, 32, 192, 768, 1025, 1043, 1044, 1056,
1216, 1792.

HDC2(12, 2), HDC2(12, 10) : 39, 55, 89, 94, 137, 228, 276, 279, 366, 425,
446, 452, 471, 556, 582, 646, 657, 764, 767, 783, 796, 865, 881, 950, 975, 1072,
1074, 1099, 1165, 1172, 1184, 1253, 1266, 1282, 1301, 1392, 1403, 1467, 1477,
1488, 1581, 1597, 1603, 1624, 1683, 1708, 1770, 1802, 1912, 1955, 1960, 2010,
2013, 2087, 2103, 2137, 2142, 2185, 2276, 2324, 2327, 2414, 2473, 2494, 2500,
2519, 2604, 2630, 2694, 2705, 2812, 2815, 2831, 2844, 2913, 2929, 2998, 3023,
3120, 3122, 3147, 3213, 3220, 3232, 3301, 3314, 3330, 3349, 3440, 3451, 3515,
3525, 3536, 3629, 3645, 3651, 3672, 3731, 3756, 3818, 3850, 3960, 4003, 4008,
4058, 4061.

HDC2(12, 3), HDC2(12, 9) : 1, 2, 17, 18, 85, 86, 171, 172, 191, 192, 255, 256,
819, 820, 841, 842, 873, 874, 919, 920, 973, 974, 3133, 3134, 3139, 3140, 3175,
3176, 3225, 3226, 3267, 3268, 3855, 3856, 3867, 3868, 3931, 3932, 4005, 4006,
4021, 4022, 4081, 4082.

42

HDC2(12, 4), HDC2(12, 8) : 52, 139, 294, 413, 1636, 1755, 1910, 1997, 2100,
2187, 2342, 2461, 3684, 3803, 3958, 4045.

HDC2(12, 5), HDC2(12, 7) : 800, 1249, 1645, 1648, 1664, 1769, 1888, 2848,
3297, 3693, 3696, 3712, 3817, 3936.

HDC2(12, 6) : 628, 1229, 1262, 1268, 1270, 1293, 2676, 3277, 3310, 3316,
3318, 3341.

HDC2(13, 3), HDC2(13, 10) : 123, 131, 271, 689, 829, 965, 1275, 1351, 1449,
1464, 1513, 1521, 1559, 1585, 1610, 1623, 1755, 1991, 2096, 2150, 2244, 2280,
2322, 2702, 2736, 2942, 3036, 3208, 3230, 3294, 3418, 3511, 3657, 3858, 3868,
3876, 3940, 4070, 4219, 4227, 4367, 4785, 4925, 5061, 5371, 5447, 5545, 5560,
5609, 5617, 5655, 5681, 5706, 5719, 5851, 6087, 6192, 6246, 6340, 6376, 6418,
6798, 6832, 7038, 7132, 7304, 7326, 7390, 7514, 7607, 7753, 7954, 7964, 7972,
8036, 8166.

HDC2(13, 4), HDC2(13, 9) : 6, 14, 22, 24, 44, 60, 4035, 4057, 4063, 4065,
4071, 4081, 4093, 4102, 4110, 4118, 4120, 4140, 4156, 8131, 8153, 8159, 8161,
8167, 8177, 8189.

HDC2(13, 5), HDC2(13, 8) : 1, 2, 31, 32, 33, 34, 993, 994, 4065, 4066, 4095,
4096, 4097, 4098, 4159, 4160, 8129, 8130, 8191, 8192.

HDC2(13, 6), HDC2(13, 7) : 1, 2, 63, 64, 963, 964, 1501, 1502, 2799, 2800,
3429, 3430, 5773, 5774, 5927, 5928.

HDC3(6, 2) : 67, 83, 134, 156, 165, 216, 236, 250, 254, 265, 280, 304, 307,
336, 375, 455, 559, 584, 599, 636, 666, 681, 716.

HDC3(6, 3) : 16, 114, 216, 421, 459, 479, 485, 486, 490, 499, 571, 600.

HDC3(6, 4) : 1, 41, 81, 401, 466, 588, 693.

HDC3(6, 5) : 20, 23, 329, 383, 384, 387, 658, 663, 685, 693.

HDC3(7, 2) : 61, 116, 119, 171, 186, 282, 294, 346, 467, 482, 497, 550, 605,
633, 685, 784, 796, 851, 863, 906, 1002, 1054, 1078, 1190, 1202, 1241, 1269,
1321, 1377, 1429, 1457, 1531, 1583, 1586, 1626, 1641, 1746, 1798, 1922, 1934,
1937, 1949, 2085, 2112, 2137.

HDC3(7, 4) : 1, 28, 310, 365, 430, 729, 744, 899, 953, 1132, 1473, 1511 ,
1812.

HDC3(7, 5) : 114, 137, 258, 313, 551, 668, 700, 751, 782, 804.

HDC3(7, 6) : 191, 196, 393, 508, 512, 922, 1117, 1234, 1656, 1848, 1853,
1968.

43

HDC3(8, 2) : 1, 42, 77, 91 ,92 ,122, 167, 243, 347, 358, 429, 443, 467, 537,
621, 627, 661, 678, 686, 785, 876, 881, 936, 943, 946, 987, 990, 1012, 1087, 1137,
1262, 1400, 1429, 1444, 1488, 1490, 1606, 1705, 1718, 1732, 1789, 1803, 1860,
1863, 1919, 1990, 2014, 2063, 2082, 2087, 2131, 2203, 2292, 2380, 2410, 2412,
2415, 2426, 2456, 2521, 2571, 2629, 2690, 2726, 2796, 2800, 2834, 2843, 2943,
2984, 2992, 3027, 3030, 3083, 3153, 3199, 3233, 3244, 3272, 3282, 3402, 3472,
3493, 3567, 3656, 3666, 3681, 3755, 3770, 3787, 3853, 4062, 4092, 4095, 4130,
4162, 4189, 4197, 4214, 4297, 4347, 4404, 4414, 4477, 4673, 4674, 4687, 4727,
4796, 4827, 4843, 4864, 4877, 4959, 5014, 5016, 5080, 5206, 5210, 5309, 5328,
5419, 5441, 5492, 5518, 5598, 5631, 5676, 5751, 5785, 5819, 5885, 5922, 5933,
5974, 5981, 6031, 6063, 6128, 6202, 6288, 6330, 6333, 6368, 6427, 6503.

HDC3(8, 4) : 1, 2, 81, 87, 96, 291, 597, 771, 1539, 2109, 2934, 3280, 3281,
3351, 3723, 4026, 4374, 5481, 5793, 6318, 6561.

HDC3(8, 5) : 27, 204, 229, 1388, 1786, 1870, 1914, 2341, 3624, 3959, 4406,
4503, 5803, 6195.

HDC3(8, 6) : 1, 365, 463, 729, 871, 930, 1718, 2328, 3268, 3281, 3619, 4361,
4752, 4779, 5859.

HDC3(8, 7) : 77, 321, 807, 808, 992, 1136, 2023, 2095, 2211, 2280, 2358,
3257, 4156, 4252, 4321, 4494, 4599, 5393, 5471, 5540, 6481.

D3(5, 1) : 9, 10, 14, 17, 21, 36, 37, 49, 52, 56, 59, 69, 79, 85, 86, 97, 99, 102,
117, 119, 128, 129, 136, 148, 150, 161, 167, 178, 183, 198, 200, 211, 217, 231,
242.

D3(5, 2) : 1, 2, 14, 27, 58, 64, 110, 121, 122, 133, 134, 166, 172, 219, 231,
241, 243.

D3(6, 3) : 1, 26, 45, 76, 127, 150, 168, 197, 236, 276, 307, 344, 365, 381, 386,
417, 419, 457, 518, 534, 542, 583, 591, 606, 607, 659, 706, 729.

D3(6, 2) : 1, 4, 15, 26, 32, 34, 39, 70, 72, 74, 331, 337, 341, 347, 354, 358,
365, 376, 383, 399, 454, 616, 656, 658, 672, 681, 691, 696, 704, 715, 729.

D3(6, 1) : 1,2, 15, 26, 29, 32, 44, 48, 51, 54, 58, 61, 70, 76, 87, 90, 99, 103,
118, 119, 121, 146, 149, 155, 158, 161, 168, 173, 177, 184, 188, 196, 212, 213,
219, 229, 232, 235, 237, 252, 253, 261, 270, 274, 283, 287, 309, 317, 320, 325,
326, 339, 344, 354, 365, 371, 376, 379, 393, 396, 402, 415, 416, 427, 435, 446,
457, 464, 467, 491, 500, 507, 519, 530, 532, 538, 546, 552, 565, 583, 584, 588,
589, 600, 602, 622, 629, 648, 655, 669, 682, 687, 693, 698, 704, 710, 715, 729.

44

16 Appendix D: MATLAB codes

Below is the source code used to generate adjacency matrices A.

function [x, fval] = GreedyAlg(A)
tic

x = zeros(size(A,2),1);

scoreM = A;
score = sum(scoreM);

while nnz(A*x) < size(A,1)
x(find(score == max(score),1)) = 1;
scoreM(A*x == 1,:) = 0;
score = sum(scoreM);

end

fval = nnz(x);

end

Below is the source code for the greedy algorithm. Input requires the adja-
cency matrix A.

function [x, fval] = GreedyAlg(A)
tic

x = zeros(size(A,2),1);

scoreM = A;
score = sum(scoreM);

while nnz(A*x) < size(A,1)
x(find(score == max(score),1)) = 1;
scoreM(A*x == 1,:) = 0;
score = sum(scoreM);

end

fval = nnz(x);

end

Below is the source code for the genetic algorithm. Input requires the adja-
cency matrix A and the lower bound lb. Note that the code can be generalized
to work for cases with q > 3 or n > 13 if the part that defines q and n is
removed, and they instead become part of the input.

function [C,K] = GenAlg(A,lb)
%% Initialization

45

tic

% We determine q and n by A's size
if mod(size(A,1),2) == 0

q = 2;
else

q = 3;
end
for i = 1:13

if qˆi == size(A,1)
n = i;
break

end
end

F = dec2base(0:qˆn−1,q,n)−48; % The matrix containing all words

time = 300;
% The maximum time that we want to calculate
POPSIZE = 40−q*n;
% The maximum population size
REPNUMBER = ceil(POPSIZE/3);
% The number of reproductions that we want to perform in each generation
MUTNUMBER = floor(2*POPSIZE/3);
% The number of mutations that we want to perform in each generation
GENNUMBER = 9999999;
% The maximum number of generations that we want to run

population = zeros(qˆn,POPSIZE);
fitness = zeros(1,POPSIZE);
neighbors = zeros(qˆn,POPSIZE);
score = zeros(qˆn,POPSIZE);

fprintf('\nInitializing population \n');
K = qˆn; % initialize fitness of the empty code

% We generate an initial population
for p = 1:POPSIZE

% Initialize the input for mutation
incCode = population(:,p);
incFitness = qˆn;
incNeighbors = zeros(qˆn,1);
incScore = (−sum(A(:,1))+1)*ones(qˆn,1);

% we can find a better code by adding or removing
% the word for which the score is negative
while min(incScore) < 0 && toc < time

[incCode,incFitness,incNeighbors,incScore] = ...
mutation(incCode,incNeighbors,incFitness,incScore,F,A,q,n);

% We find a local optimum for each code in the initial population
end

% Store output of mutation
population(:,p) = incCode;
fitness(1,p) = incFitness;
neighbors(:,p) = incNeighbors;

46

score(:,p) = incScore;
end

%Display results of the initial population
[K,I] = min(fitness); x = toc;
fprintf('Smallest cardinality in initial population: %d\n', K);
fprintf('Time elapsed: %f', x);

% We save the initial best solution
C = population(:,I);
C(neighbors(:,I) == 0) = C(neighbors(:,I) == 0) + 1;
% We update the solution code to its feasible counterpart

%% Producing new generations
gen = 0;
x = toc;

while gen < GENNUMBER && x < time && min(fitness) > lb

% Initialize new population
newPopulation = zeros(qˆn,REPNUMBER + MUTNUMBER);
newNeighbors = zeros(qˆn,REPNUMBER + MUTNUMBER);
newFitness = zeros(1,REPNUMBER + MUTNUMBER);
newScore = zeros(qˆn,REPNUMBER + MUTNUMBER);

% We generate REPNUMBER reproductions
k = 1;
while k <= REPNUMBER

row = find(fitness == min(fitness));
% The fittest parent will be selected

% We build in an 'escape' probabilty for local optima
if length(row) > 1 && rand < 0.8

pick1 = row(ceil(rand*length(row)));
pick2 = row(ceil(rand*length(row)));

while pick2 == pick1 % Make sure that we have two different parents
pick2 = row(ceil(rand*length(row)));

end
else

if rand < 0.8
pick1 = row(1);
pick2 = ceil(rand*POPSIZE);

else
pick1 = ceil(rand*POPSIZE);
pick2 = ceil(rand*POPSIZE);

end

while pick2 == pick1 % Make sure that we have two different parents
pick2 = ceil(rand*POPSIZE);

end
end

% Define the scores of the parents

47

codeScore1 = score(:,pick1);
codeScore2 = score(:,pick2);

[repCode,repFitness,repNeighbors,repScore] = ...
reproduction(codeScore1,codeScore2,F,A,q,n,lb);

%insert the new codes in the newPopulation matrix
newPopulation(:,k) = repCode;
newNeighbors(:,k) = repNeighbors;
newFitness(1,k) = repFitness;
newScore(:,k) = repScore;

k = k+1; % We move to the next reproduction
end

% We generate mutations
k = 1;
while k <= MUTNUMBER

% We build in an 'escape' probabilty for local optima
if rand < 0.8

row = find(fitness == min(fitness));
pick = row(ceil(rand*length(row)));

else
pick = ceil(rand*length(POPSIZE));

end

%Define the input for mutation
code = population(:,pick);
codeNeighbors = neighbors(:,pick);
codeFitness = fitness(pick);
codeScore = score(:,pick);

% We mutate the chosen code
[mutCode,mutFitness,mutNeighbors,mutScore] = ...

mutation(code,codeNeighbors,codeFitness,codeScore,F,A,q,n);

%insert the new code in the newPopulation matrix
newPopulation(:,REPNUMBER+k) = mutCode;
newNeighbors(:,REPNUMBER+k) = mutNeighbors;
newFitness(1,REPNUMBER+k) = mutFitness;
newScore(:,REPNUMBER+k) = mutScore;

k = k+1; % We move to the next mutation
end

% We use a 2−code tournament to select population for the next
% generation. This way, the best code always remains in the population,
% and weak codes still have a small chance of staying in the
% population, which can help us escape local optima
[population,fitness,neighbors,score] = ...

selection(population,newPopulation,fitness,newFitness,neighbors,...
newNeighbors,score,newScore,POPSIZE,q,n);

%Plot the results
% fitBounds(gen + 1, :) = [mean(fitness),min(fitness)];
% lastGens = ceil(100/(n*q));
% lastBest = fitBounds(max(gen−lastGens,1):gen+1,:);

48

% xas = max(gen−lastGens,1):gen+1; % define x−as for the zoomed plot
% subplot(1,2,1);% plot of all generations and the cardinalities
% plot(fitBounds)
% title('Cardinality found in each generation');
% xlabel('Generation number');
% ylabel('Cardinality');
% legend('Mean cardinality','Minimum cardinality');
% drawnow
% subplot(1,2,2); % the zoomed plot
% plot(xas,lastBest)
% title('Cardinality of the last generations');
% xlabel('Generation number');
% ylabel('Cardinality');
% legend('Mean cardinality','Minimum cardinality');
% drawnow
%
%Display results of this generation
%fprintf('\nGeneration number: %d \n',gen+1);
%fprintf('Smallest possible cardinality found so far: %d\n', min(fitness));

gen = gen + 1; % We update the generation number
x = toc; % We update the time passed

if min(fitness)< K
fprintf('\nNew smallest cardinality found: %d', min(fitness));
fprintf('\nTime elapsed: %f', x);
[K,I] = min(fitness);
C = population(:,I);
C(neighbors(:,I) == 0) = C(neighbors(:,I) == 0) + 1;

end
% We update the solution code to its feasible counterpart

end

%% Generate results

fprintf('\nTime elapsed: %f seconds', x);
fprintf('\nNumber of generations: %d', gen);
if round(x) >= time

fprintf('\nStopping criterium: Time limit reached\n');
else

if K == lb
fprintf('\nStopping criterium: Optimum reached\n');

else
fprintf('\nStopping criterium: Max # of generations reached\n');

end
end

end

%%%
function [mutCode,mutFitness,mutNeighbors,mutScore] = ...

mutation(code,codeNeighbors,codeFitness,codeScore,F,A,q,n)

49

mutCode = code;
mutNeighbors = codeNeighbors;
mutScore = codeScore;
mutFitness = codeFitness;

newWords = find(mutScore == min(mutScore));
% We find the words that reduce fitness the most when we add/subtract them
pick = newWords(ceil(rand*length(newWords)));

mutFitness = mutFitness + codeScore(pick);

if mutCode(pick) == 1
% This means that the word is in the code, so we need to remove it

mutCode(pick) = 0;
neighborhood = A(:,pick);
mutNeighbors=mutNeighbors−A(:,pick); % We update the neighbors

% We update the score
row = find(neighborhood == 1);
for k = 1:length(row)

if mutNeighbors(row(k)) == 0
neighborhood2 = A(:,row(k));
mutScore = mutScore − neighborhood2;

end
if mutNeighbors(row(k)) == 1

neighborhood2 = A(:,row(k));
mutScore = mutScore + neighborhood2.*mutCode;

end
end

mutScore(pick) = −codeScore(pick);

else % This means that the word is not in the code, so we add it

mutCode(pick) = 1;
neighborhood = A(:,pick);
mutNeighbors=mutNeighbors+neighborhood;

% We update the score
row = find(neighborhood == 1);
for k = 1:length(row)

if mutNeighbors(row(k)) == 1
neighborhood2 = A(:,row(k));
mutScore(mutCode == 0) = mutScore(mutCode == 0) + ...

neighborhood2(mutCode == 0);
end
if mutNeighbors(row(k)) == 2

neighborhood2 = A(:,row(k));
mutScore = mutScore − neighborhood2.*mutCode;

end
end
mutScore(pick) = −codeScore(pick);

end

if mutFitness >= codeFitness

50

tabuScore = mutScore; tabuScore(pick) = 999999;
newWords = find(tabuScore == min(tabuScore));
% We find the words that will reduce fitness the most
pick = newWords(ceil(rand*length(newWords)));

mutFitness = mutFitness + codeScore(pick);

if mutCode(pick) == 1
% This means that the word is in the code, so we remove it

mutCode(pick) = 0;
neighborhood = A(:,pick);
mutNeighbors=mutNeighbors−A(:,pick); % We update the neighbors

% We update the score
row = find(neighborhood == 1);
for k = 1:length(row)

if mutNeighbors(row(k)) == 0
neighborhood2 = A(:,row(k));
mutScore = mutScore − neighborhood2;

end
if mutNeighbors(row(k)) == 1

neighborhood2 = A(:,row(k));
mutScore = mutScore + neighborhood2.*mutCode;

end
end

mutScore(pick) = −codeScore(pick);

else % This means that the word is not in the code, so we add it

mutCode(pick) = 1;
neighborhood = A(:,pick);
mutNeighbors=mutNeighbors+neighborhood;

% We update the score
row = find(neighborhood == 1);
for k = 1:length(row)

if mutNeighbors(row(k)) == 1
neighborhood2 = A(:,row(k));
mutScore(mutCode == 0) = mutScore(mutCode == 0) + ...

neighborhood2(mutCode == 0);
end
if mutNeighbors(row(k)) == 2

neighborhood2 = A(:,row(k));
mutScore = mutScore − neighborhood2.*mutCode;

end
end
mutScore(pick) = −codeScore(pick);

end
end

end
%%%
function [repCode,repFitness,repNeighbors,repScore] = ...

reproduction(codeScore1,codeScore2,F,A,q,n,lb)

51

repCode = zeros(qˆn,1);
repFitness = qˆn;
repNeighbors = zeros(qˆn,1);
repScore = (−sum(A(:,1))+1)*ones(qˆn,1);

genes1 = find(abs(codeScore1) > (qˆn)/(2*lb));
genes2 = find(abs(codeScore2) > (qˆn)/(2*lb));
genes = union(genes1,genes2);

for i = 1:length(genes)

pick = genes(i);
repFitness = repFitness + repScore(pick);

if repCode(pick) == 1
% This means that the word is in the code, so we need to remove it

repCode(pick) = 0;
neighborhood = A(:,pick);
repNeighbors=repNeighbors−neighborhood; % We update the neighbors

% We update the score
row = find(neighborhood == 1);
for k = 1:length(row)

if repNeighbors(row(k)) == 0
neighborhood2 = A(:,row(k));
repScore = repScore − neighborhood2;

end
if repNeighbors(row(k)) == 1

neighborhood2 = A(:,row(k));
repScore = repScore + neighborhood2.*repCode;

end
end

repScore(pick) = −repScore(pick);

else % This means that the word is not in the code, so we add it

repCode(pick) = 1;
neighborhood = A(:,pick);
repNeighbors=repNeighbors+neighborhood;

% We update the score
row = find(neighborhood == 1);
for k = 1:length(row)

if repNeighbors(row(k)) == 1
neighborhood2 = A(:,row(k));
repScore(repCode == 0) = repScore(repCode == 0) + ...

neighborhood2(repCode == 0);
end
if repNeighbors(row(k)) == 2

neighborhood2 = A(:,row(k));
repScore = repScore − neighborhood2.*repCode;

end
end
repScore(pick) = −repScore(pick);

end

52

end

while min(repScore) < 0
[repCode,repFitness,repNeighbors,repScore] = ...

mutation(repCode,repNeighbors,repFitness,repScore,F,A,q,n);
end

end
%%%
function [population,fitness,neighbors,score] = ...

selection(population,newPopulation,fitness,newFitness,neighbors,...
newNeighbors,score,newScore,POPSIZE,q,n)

% We merge the original and new population into one set
newPopulation = [population newPopulation];
newFitness = [fitness newFitness];
newNeighbors = [neighbors newNeighbors];
newScore = [score newScore];

tournamentOrder = randperm(size(newPopulation,2));
% We randomly match different codes for the selection tournament

% We initialize the matrices for the next generation
population = zeros(qˆn,POPSIZE);
fitness = zeros(1,POPSIZE);
neighbors = zeros(qˆn,POPSIZE);
score = zeros(qˆn,POPSIZE);

for p = 1:POPSIZE
code1 = tournamentOrder(2*p−1); code2 = tournamentOrder(2*p);
if newFitness(code1) < newFitness(code2)

population(:,p)=newPopulation(:,code1);
fitness(1,p)=newFitness(1,code1);
neighbors(:,p)=newNeighbors(:,code1);
score(:,p)=newScore(:,code1);

else
population(:,p)=newPopulation(:,code2);
fitness(1,p)=newFitness(1,code2);
neighbors(:,p)=newNeighbors(:,code2);
score(:,p)=newScore(:,code2);

end
end

end

Below is the source code for the level 1 Sherali-Adams relaxation.

function [x, fval] = SARelax1(a,J,Sets,orbitSizes,ub)

% Input information:
% a is the first constraint of the adjacency constraint matrix A that
% we want to relax.
% J is the vector of possible vertices that can form J.
% Sets is the qˆn x qˆn matrix where Sets(i,j) gives the number of the
% orbit the set is in.
% orbitSizes gives the sizes of the orbits in Sets.
% ub gives the best known upper bound of the instance

53

constraintVertices = find(a);
numOrbits = max(max(Sets));

SA = zeros(2*size(J,1)+ub−1,2*(1+numOrbits)+ub);
b = zeros(2*size(J,1)+ub−1,1);
% This will be the constraint system for the SA relaxation

for j = 1:size(J,1)

b(2*j) = −1; % This is the homogeneous result from (a−1)(1−x).
% Note thatthere is no homogeneous term in (a−1)x

SA(2*j−1,1) = 1; % −1*x part from (a−1)*x
SA(2*j,1) = −size(constraintVertices,2)−1; % a*1 part from (a−1)(1−x)

for v = 1:size(constraintVertices,2)
if J(j) == constraintVertices(v)

SA(2*j−1,1) = SA(2*j−1,1) − 1; % Since xi*xi = xi
SA(2*j,1) = SA(2*j,1) + 1;

else
orbit = Sets(J(j),constraintVertices(v));
SA(2*j−1,1+orbit)=SA(2*j−1,1+orbit)−1;
SA(2*j,1+orbit)=SA(2*j,1+orbit)+1;

end
end

end

% We set the orbit and dummy variables in this constraint
SAeq(1:2*(numOrbits+1)+ub) = [orbitSizes(1),zeros(1,1+2*numOrbits), ...

−ones(1,ub)]; beq = 0;
for o = 1:numOrbits+1

SAeq(size(SAeq,1)+1,o) = −orbitSizes(o);
SAeq(size(SAeq,1),1+numOrbits+o) = 1;
beq(1+o,1) = 0;

end

% We set an ordering on the dummy variables
for d = 1:ub−1

SA(size(SA,1)+1,2*(numOrbits+1)+d)=−1;
SA(size(SA,1),2*(numOrbits+1)+d+1) = 1;
b(size(SA,1)) = 0;

end

% We add the counting constraint
SA(size(SA,1)+1,:) = 0; b(size(SA,1)) = 0;
for o = 1:numOrbits

SA(size(SA,1),2+numOrbits+o) = −1;
end
for d = 2:ub

SA(size(SA,1),2*(numOrbits+1)+d)=d−1;
end

f = [orbitSizes(1),zeros(1,1+2*numOrbits+ub)]; % The objective function
% consists only of the cost of the single variable, multiplied by the
% cardinality of its orbit

54

options = 'emphasis.numerical'; % We use the simplex method for optimizing,
% because the (default) interior point method may be slightly inaccurate,
% which can lead to unreliable results when working with large orbits.

% We create the variable types. Note that all types are continuous except
% for the orbit representatives of size 2
ctype = [];
for c = 1:1+numOrbits

ctype = [ctype,'C'];
end
for c = 1+numOrbits+1:2*(numOrbits+1)

ctype = [ctype,'I'];
end
for c = 2*(numOrbits+1)+1:2*(numOrbits+1)+ub

ctype = [ctype,'C'];
end

% We solve the linear relaxation
[x,fval] = cplexmilp(f,SA,b,SAeq,beq,[],[],[],zeros(2*(numOrbits+1)+ub,1),...

[ones(1+numOrbits,1);ub;nchoosek(ub,2)*ones(numOrbits,1);ones(ub,1)]...
,ctype,[],options);

end

55

	Acknowledgements
	Introduction
	Problem definition
	General bounds for the Inverse Football Pool Problem
	General bounds for the Hamming Distance Covering Problem
	Symmetry in the football pool problem
	The symmetry-shrunken Sherali-Adams relaxation
	Improving upper bounds for open cases
	Improving lower bounds for open cases
	Conclusion and recommendations
	Open source software used
	References
	Appendix A: Tables for IFPP
	Appendix B: Tables for HDC
	Appendix C: Covering codes for non-trivial instances
	Appendix D: MATLAB codes

