login
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no element greater than all horizontal neighbors or less than all vertical neighbors
6

%I #4 Feb 22 2014 06:32:28

%S 4,16,16,50,204,50,144,1844,1844,144,422,13948,42084,13948,422,1268,

%T 105862,737366,737366,105862,1268,3823,850420,12926271,27913368,

%U 12926271,850420,3823,11472,6953993,245920800,1058583000,1058583000,245920800

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no element greater than all horizontal neighbors or less than all vertical neighbors

%C Table starts

%C ......4.........16.............50................144.................422

%C .....16........204...........1844..............13948..............105862

%C .....50.......1844..........42084.............737366............12926271

%C ....144......13948.........737366...........27913368..........1058583000

%C ....422.....105862.......12926271.........1058583000.........87389474502

%C ...1268.....850420......245920800........44441926832.......8155057418133

%C ...3823....6953993.....4810332239......1931022884277.....790756782942944

%C ..11472...56279542....92790334588.....82508389421874...75089860262272452

%C ..34350..451637564..1767175335274...3470891253761820.7004416705370946171

%C .102896.3624058880.33631393265283.145872518046542058

%H R. H. Hardin, <a href="/A238287/b238287.txt">Table of n, a(n) for n = 1..97</a>

%F Empirical for column k:

%F k=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)

%F k=2: [order 25]

%e Some solutions for n=3 k=4

%e ..0..2..2..1..1....2..2..1..0..0....0..2..2..0..0....0..0..2..2..0

%e ..0..2..2..1..0....0..0..0..0..0....0..2..2..0..0....0..0..2..2..0

%e ..1..2..2..2..0....0..0..0..1..1....1..3..3..2..0....0..2..2..3..3

%e ..1..2..2..2..1....2..2..0..3..3....1..3..3..3..0....2..3..3..3..3

%Y Column 1 is A203094(n+1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 22 2014