%I
%S 2,4,8,88,252,2576,21708,2112,4224,8448,44544,48384,2977792,21989376,
%T 405504,4091904,441606144,405909504,886898688,677707776,4285005824
%N Smallest number m > 1 (not ending in a 0) such that m and the digit reversal of m have n prime factors (counted with multiplicity). Palindromes are included.
%F a(n) = min{A076886(n+1), A237912(n)}
%e 252 is the smallest number such that 252 and its reverse (also 252) have 5 prime factors (2*2*3*3*7). So, a(5) = 252.
%e 2576 is the smallest number such that 2576 and its reverse (6752) have 6 prime factors (2*2*2*2*7*23 and 2*2*2*2*2*211, respectively). So a(6) = 2576.
%o (Python)
%o import sympy
%o from sympy import factorint
%o def rev(x):
%o ..rev = ''
%o ..for i in str(x):
%o ....rev = i + rev
%o ..return int(rev)
%o def RevFact(x):
%o ..n = 2
%o ..while n < 10**8:
%o ....if n % 10 != 0:
%o ......if sum(list(factorint(n).values())) == x:
%o ........if sum(list(factorint(rev(n)).values())) == x:
%o ..........return n
%o ........else:
%o ..........n += 1
%o ......else:
%o ........n += 1
%o ....else:
%o ......n += 1
%o x = 1
%o while x < 100:
%o ..print(RevFact(x))
%o ..x += 1
%Y Cf. A004086, A076886, A237912.
%K nonn,base,more
%O 1,1
%A _Derek Orr_, Feb 15 2014
%E a(17)a(21) from _Giovanni Resta_, Feb 23 2014
