login
a(n) = 2-adic valuation of prime(n)+prime(n+1).
1

%I #21 Nov 02 2023 16:01:53

%S 0,3,2,1,3,1,2,1,2,2,2,1,2,1,2,4,3,7,1,4,3,1,2,1,1,2,1,3,1,4,1,2,2,5,

%T 2,2,6,1,2,5,3,2,7,1,2,1,1,1,3,1,3,5,2,2,3,2,2,2,1,2,6,3,1,4,1,3,2,2,

%U 3,1,3,1,2,4,1,2,1,1,1,2,3,2,5,3,1,2,1,1,2,1,1,1,1,1,1,2,1,2,3,6,4,5,2,2,2,2,2,3,4,3,2,1,2,1,3,2,1,2,5,3,1,1,4

%N a(n) = 2-adic valuation of prime(n)+prime(n+1).

%H Charles R Greathouse IV, <a href="/A237881/b237881.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A007814(A001043(n)).

%F a(n) << log n; in particular, a(n) <= log_2 n + log_2 log n + O(1). - _Charles R Greathouse IV_, Feb 14 2014

%e a(5)=3 because prime(5)=11, prime(6)=13, 11+13=24=2^3*3, 2-adic valuation(24)=3.

%t IntegerExponent[ListConvolve[{1,1},Prime[Range[200]]],2] (* _Paolo Xausa_, Nov 02 2023 *)

%o (PARI) {for(i=1,200,k=valuation(prime(i)+prime(i+1),2);print1(k,", "))}

%o (Python)

%o from sympy import prime

%o def A237881(n): return (~(m:=prime(n)+prime(n+1))&m-1).bit_length() # _Chai Wah Wu_, Jul 08 2022

%Y Cf. A071087, A098048.

%K nonn,easy

%O 1,2

%A _Antonio Roldán_, Feb 14 2014