%I
%S 81,435,435,2174,5433,2174,11545,60958,60958,11545,61055,731603,
%T 1415117,731603,61055,326262,8680769,36167196,36167196,8680769,326262,
%U 1745153,103860036,901210126,2009833839,901210126,103860036,1745153,9357963
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the upper median of every 2X2 subblock equal
%C Table starts
%C ......81.........435...........2174.............11545................61055
%C .....435........5433..........60958............731603..............8680769
%C ....2174.......60958........1415117..........36167196............901210126
%C ...11545......731603.......36167196........2009833839.........108105728913
%C ...61055.....8680769......901210126......108105728913.......12453653921528
%C ..326262...103860036....22791851729.....5924015749908.....1470245290038872
%C .1745153..1241171131...575227568134...323852801203185...173172498170107173
%C .9357963.14853266129.14576482693268.17797884221279895.20549153283999881019
%H R. H. Hardin, <a href="/A237308/b237308.txt">Table of n, a(n) for n = 1..199</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 9]
%F k=2: [order 17]
%F k=3: [order 38]
%F k=4: [order 87]
%e Some solutions for n=2 k=4
%e ..0..1..0..0..1....0..1..0..0..2....0..0..0..1..1....0..0..2..0..1
%e ..0..1..1..1..2....1..2..1..1..1....2..1..1..1..1....1..1..1..1..1
%e ..1..0..2..0..0....1..0..0..2..1....0..1..2..1..2....0..1..1..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 06 2014
|