login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lesser prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.
3

%I #17 Feb 07 2014 10:15:58

%S 2,3,3,3,3,3,3,3,3,691,3,17,313,3,7,11,7,3,11,47,19,3,1499,17,71,3,97,

%T 7,13,823,3,97,1163,31,17,199,1907,53,3,17,1231,1013,3,13,53,3,67,47,

%U 23,1013,787,127,347,17,37,97,683,631,73,4549,173,11,17,1039,3,17,47,6389,3,461,23,673,37,29,331,7451,1433,4561

%N Lesser prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.

%C For n > 1, smallest prime p such that ((p-1)^prime(n)+1)/p is prime; the corresponding primes ((p-1)^prime(n)+1)/p are A237116(n) = 3, 11, 43, 683, 2731, 43691, 174763, 2796203, ... and the corresponding semiprimes (p-1)^prime(n)+1 are A237114(n) = 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, ... .

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Semiprime">Semiprime</a>

%F a(n) = A237114(n)/A237116(n), for n > 0.

%F (a(n)-1)^prime(n) = A237114(n)-1, for n > 1.

%F a(n) == A237114(n) (mod prime(n)) (for a proof, see A237114).

%F a(n) mod prime(n) = A237117(n), if a(n) > 0.

%e Prime(1)=2 and the smallest semiprime of the form k^2+1 is 3^2+1 = 10 = 2*5, so a(1) = 2.

%e Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 3.

%t L = {2}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q + 1], {k, 2, 78}]; L

%Y Cf. A001358, A103795, A123627, A123628, A237040, A237114, A237116, A237117.

%K nonn

%O 1,1

%A _Jonathan Sondow_, Feb 04 2014