The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237061 Number of (n+1)X(2+1) 0..2 arrays with the maximum plus the upper median plus the minimum minus the lower median of every 2X2 subblock equal 1

%I

%S 255,1101,5034,25451,132095,723774,3983941,22797711,129296092,

%T 756671245,4355865411,25775863718,149461131883,889200135475,

%U 5174050599728,30862163101623,179882294574133,1074306258732204,6266781494242621

%N Number of (n+1)X(2+1) 0..2 arrays with the maximum plus the upper median plus the minimum minus the lower median of every 2X2 subblock equal

%C Column 2 of A237067

%H R. H. Hardin, <a href="/A237061/b237061.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) +41*a(n-2) -446*a(n-3) -123*a(n-4) +7323*a(n-5) -4271*a(n-6) -59999*a(n-7) +45046*a(n-8) +286308*a(n-9) -194469*a(n-10) -837761*a(n-11) +441540*a(n-12) +1512121*a(n-13) -564301*a(n-14) -1656226*a(n-15) +420594*a(n-16) +1074464*a(n-17) -181800*a(n-18) -395488*a(n-19) +41584*a(n-20) +75456*a(n-21) -3840*a(n-22) -5760*a(n-23)

%e Some solutions for n=5

%e ..1..0..1....1..2..1....1..2..2....0..0..0....0..1..0....1..0..1....0..0..2

%e ..0..2..0....2..0..2....0..2..1....2..1..2....2..2..2....2..1..0....1..2..1

%e ..1..0..1....0..1..0....1..2..2....0..2..2....0..1..0....0..1..2....2..2..2

%e ..2..2..0....2..2..2....2..0..1....0..1..0....2..0..2....1..0..1....2..1..2

%e ..2..1..2....1..2..1....1..0..2....2..0..2....2..1..2....1..0..1....0..2..0

%e ..0..2..2....2..2..2....2..0..1....1..2..1....0..0..2....0..1..2....0..1..2

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 03 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 17:52 EST 2021. Contains 349343 sequences. (Running on oeis4.)