%I #11 Nov 22 2020 03:06:45
%S 1,2,3,8,9,11,14,21,29,30,35,36,39,50,51,53,56,74,78,81,95,105,116,
%T 140,155,165,176,179,191,198,224,228,245,284,303,336,378,393,410,413,
%U 414,428,429,438,464,485,491,504,506,515,534,546,554,575,596,611,638,641,648,659,680,683,711,714,725,744,765,774,791
%N Numbers k such that (2*k)^3 + 1 is a semiprime.
%C Numbers k such that 2*k+1 and 4*k^2 - 2*k + 1 are both prime.
%C Same as k/2 such that k^3 + 1 is a semiprime, because then k must be even.
%H Amiram Eldar, <a href="/A237037/b237037.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Semiprime">Semiprime</a>.
%F a(n) = A096173(n)/2 = (1/2)*(A237040(n)-1)^(1/3).
%e (2*1)^3 + 1 = 9 = 3*3 is a semiprime, so a(1) = 1.
%t Select[Range[800], PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]
%Y Cf. A001358, A046315, A081256, A096173, A096174, A237038, A237039, A237040.
%K nonn
%O 1,2
%A _Jonathan Sondow_, Feb 02 2014