Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 10 2022 06:14:13
%S 1,5,37,269,1949,14121,102313,741305,5371097,38916077,281964941,
%T 2042966149,14802232757,107249008849,777068573905,5630220503025,
%U 40793546383409,295568073335893,2141527121824885,15516352499614333,112423136012925517,814557513519681785
%N The number of tilings of a 7 X (4n) floor with 1 X 4 tetrominoes.
%C Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
%H Mudit Aggarwal and Samrith Ram, <a href="https://arxiv.org/abs/2206.04437">Generating functions for straight polyomino tilings of narrow rectangles</a>, arXiv:2206.04437 [math.CO], 2022.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1311.6135">Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings</a>, arXiv:1311.6135 [math.CO], 2013, Table 36.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1406.7788">Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices</a>, arXiv:1406.7788 [math.CO], eq. (27).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-6,4,-1).
%F G.f.: (1-x)^3/(-8*x+1+6*x^2-4*x^3+x^4).
%p g := (1-x)^3/(-8*x+1+6*x^2-4*x^3+x^4) ;
%p taylor(%,x=0,30) ;
%p gfun[seriestolist](%) ;
%t LinearRecurrence[{8, -6, 4, -1}, {1, 5, 37, 269}, 19] (* _Jean-François Alcover_, Feb 19 2019 *)
%Y Cf. A003269 (4Xn floor), A236579 - A236582.
%K nonn
%O 0,2
%A _R. J. Mathar_, Jan 29 2014