Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 06 2014 10:02:00
%S 1,2,2,1,3,1,1,2,2,2,1,4,2,2,2,1,2,3,4,3,2,1,4,3,5,4,3,2,1,3,4,6,6,5,
%T 3,2,1,4,4,8,9,6,5,3,2,1,2,5,10,11,10,7,5,3,2,1,6,5,11,14,13,10,7,5,3,
%U 2,1,2,6,14,18,18,14,11,7,5,3,2,1,4,6,16
%N Triangular array T: T(n,1) = number of constant partitions of n; T(n,k) = number of nonconstant partitions of n that have length k, for k = 2..n-1, for n >= 2.
%C This array occurs naturally in a method for counting the distinct cyclic permutations of the partitions of n (A236292). The row sums, limit of column n, and limit of reversed row n are given by A000041, and (column 1) = A000005. Does column 3 give the nonzero terms of A230059?
%H Alois P. Heinz, <a href="/A236293/b236293.txt">Rows n = 1..150, flattened</a>
%F Row n: (d(n), f(2), f(3),..., f(n-1)), where d(n) = (number of divisors of n) = (number of constant partitions of n), and f(k) = number of nonconstant partitions of n, for k = 2,3,...,n-1.
%e First ten rows:
%e 1
%e 2
%e 2 .. 1
%e 3 .. 1 .. 1
%e 2 .. 2 .. 2 .. 1
%e 4 .. 2 .. 2 .. 2 .. 1
%e 2 .. 3 .. 4 .. 3 .. 2 .. 1
%e 4 .. 3 .. 5 .. 4 .. 3 .. 2 .. 1
%e 3 .. 4 .. 6 .. 6 .. 5 .. 3 .. 2 .. 1
%e 4 .. 4 .. 8 .. 9 .. 6 .. 5 .. 3 .. 2 .. 1
%e (row 6) = (4,2,2,2,1). The 5 numbers in (4,2,2,2,1) count these partitions: (6, 33, 222, 1111); (51, 42); (411, 321); (3111, 2211); (211111). ("Constant partition" is exemplified by 6, 33, 222, 1111; i.e., all the parts are the same number.)
%t t = Map[Flatten[{Length[#[[1]]], Transpose[Tally[Map[Length, #[[2]]]]][[2]]} &[GatherBy[IntegerPartitions[#], Length[Union[#]] > 1 &]]] &, Range[3, 20]] u = Flatten[t]; Flatten[Prepend[u, {1, 2}]]
%t (* _Peter J. C. Moses_, Jan 21 2014 *)
%Y Cf. A000005, A236292, A230059.
%K nonn,tabf,easy
%O 1,2
%A _Clark Kimberling_, Jan 22 2014