login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.
2

%I #8 Jan 24 2014 11:15:58

%S 1,9,16,343,36,20736,64,50625,2197,104976,144,481890304,196,331776,

%T 331776,28629151,324,3518743761,400,5489031744,1048576,1679616,576,

%U 167961600000000,29791,3111696,2560000,30840979456,900,722204136308736,1024,62523502209,5308416

%N a(n) = sigma(n)^tau(n), where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

%H Jaroslav Krizek, <a href="/A236287/b236287.txt">Table of n, a(n) for n = 1..100</a>

%F a(n) = A000203(n)^A000005(n).

%e a(4) = sigma(4)^tau(4) = 7^3 = 343.

%t Table[DivisorSigma[1, n]^DivisorSigma[0, n], {n, 1000}]

%o (PARI) s=[]; for(n=1, 40, s=concat(s, sigma(n, 1)^sigma(n, 0))); s \\ _Colin Barker_, Jan 24 2014

%Y Cf. A000005 (tau(n)), A000203 (sigma(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236285 (tau(n)^sigma(n)), A236286.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Jan 23 2014