login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with 2X2 subblock sum of squares lexicographically nondecreasing rowwise and columnwise
4

%I #4 Jan 21 2014 13:03:01

%S 81,432,432,2304,5805,2304,9504,87450,87450,9504,39204,901317,4297035,

%T 901317,39204,138402,9293996,134940646,134940646,9293996,138402,

%U 488601,73777097,4211459815,13055877546,4211459815,73777097,488601,1553877

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with 2X2 subblock sum of squares lexicographically nondecreasing rowwise and columnwise

%C Table starts

%C .......81.........432...........2304.............9504.............39204

%C ......432........5805..........87450...........901317...........9293996

%C .....2304.......87450........4297035........134940646........4211459815

%C .....9504......901317......134940646......13055877546.....1257559565027

%C ....39204.....9293996.....4211459815....1257559565027...374969850504444

%C ...138402....73777097....95929739101...86958471603770.79511653034814238

%C ...488601...583531732..2162880693927.5933159964415314

%C ..1553877..3814287681.38763321249354

%C ..4941729.24858329516

%C .14587326

%H R. H. Hardin, <a href="/A236282/b236282.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 26]

%e Some solutions for n=2 k=4

%e ..0..2..2..0..2....1..2..0..0..2....0..1..2..0..0....0..0..0..0..2

%e ..0..0..0..2..2....1..0..2..2..1....1..0..0..2..2....0..0..2..1..1

%e ..1..2..1..0..0....1..2..1..1..2....2..2..2..1..2....2..1..2..1..2

%Y Column 1 is A235417

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 21 2014