%I #31 Nov 27 2023 00:23:03
%S 1,2,4,7,8,13,14,16,17,19,23,26,28,29,31,32,34,37,38,41,43,46,47,49,
%T 52,53,56,58,59,61,62,64,67,68,71,73,74,76,79,82,83,86,89,91,92,94,97,
%U 98,101,103,104,106,107,109,112,113,116,118,119,122,124,127,128
%N Numbers not divisible by 3, 5 or 11.
%C Numbers coprime to 165. The asymptotic density of this sequence is 16/33. - _Amiram Eldar_, Oct 23 2020
%H Bruno Berselli, <a href="/A236217/b236217.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_81">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
%F a(n) = a(n-1) + a(n-80) - a(n-81) for n > 81. - _Bruno Berselli_, Mar 25 2014
%t Select[Range[200], Mod[#, 3] > 0 && Mod[#, 5] > 0 && Mod[#, 11] > 0 &] (* or *) Select[Range[200], Or @@ Divisible[#, {3, 5, 11}] == False &] (* _Bruno Berselli_, Mar 24 2014 *)
%t Select[Range[130], CoprimeQ[165, #] &] (* _Amiram Eldar_, Oct 23 2020 *)
%Y Intersection of: A160542 and A229829; A047201 and A229968; A001651, A047201 and A160542.
%Y Cf. A236206, A236208.
%K nonn,easy
%O 1,2
%A _Oleg P. Kirillov_, Jan 20 2014