login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236167 Numbers k such that (47^k + 1)/48 is prime. 2

%I #19 May 20 2021 04:46:55

%S 5,19,23,79,1783,7681

%N Numbers k such that (47^k + 1)/48 is prime.

%C a(7) > 10^5.

%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

%H H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.

%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>.

%t Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]

%o (PARI) is(n)=ispseudoprime((47^n+1)/48) \\ _Charles R Greathouse IV_, Jun 06 2017

%o (Python)

%o from sympy import isprime

%o def afind(startat=0, limit=10**9):

%o pow47 = 47**startat

%o for k in range(startat, limit+1):

%o q, r = divmod(pow47+1, 48)

%o if r == 0 and isprime(q): print(k, end=", ")

%o pow47 *= 47

%o afind(limit=300) # _Michael S. Branicky_, May 19 2021

%Y Cf. A000978 = numbers k such that (2^k + 1)/3 is prime. Cf. A007658, A057171, A057172, A057173, A057175, A001562, A057177, A057178, A057179, A057180, A057181, A057182, A057183, A057184, A057185, A057186, A057187, A057188, A057189, A057190, A057191, A071380, A071381, A071382, A084741, A084742, A065507, A126659, A126856, A185240, A229145, A229524, A230036, A229663, A231604, A231865, A235683.

%K hard,more,nonn

%O 1,1

%A _Robert Price_, Jan 19 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 06:57 EDT 2024. Contains 371265 sequences. (Running on oeis4.)