login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the sum of each 2X2 subblock two extreme terms minus its two median terms lexicographically nondecreasing rowwise and columnwise
5

%I #4 Jan 16 2014 08:21:08

%S 81,487,487,2581,6921,2581,12373,86509,86509,12373,55929,919222,

%T 2919508,919222,55929,241933,8638740,84434218,84434218,8638740,241933,

%U 1015889,73276865,2090202044,7084268884,2090202044,73276865,1015889,4174941

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the sum of each 2X2 subblock two extreme terms minus its two median terms lexicographically nondecreasing rowwise and columnwise

%C Table starts

%C .......81........487.........2581..........12373...........55929.........241933

%C ......487.......6921........86509.........919222.........8638740.......73276865

%C .....2581......86509......2919508.......84434218......2090202044....44724089619

%C ....12373.....919222.....84434218.....7084268884....509718744920.31142484762646

%C ....55929....8638740...2090202044...509718744920.109676839408289

%C ...241933...73276865..44724089619.31142484762646

%C ..1015889..573836909.849474770590

%C ..4174941.4209526173

%C .16895401

%H R. H. Hardin, <a href="/A235842/b235842.txt">Table of n, a(n) for n = 1..49</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 16]

%e Some solutions for n=2 k=4

%e ..0..2..0..0..0....0..1..1..0..2....0..1..1..0..1....0..1..0..2..0

%e ..2..2..0..1..2....1..1..1..0..0....1..1..0..0..2....1..0..1..0..0

%e ..1..2..1..1..1....0..0..2..0..2....0..2..0..0..0....1..0..2..2..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 16 2014