%I
%S 3264,9616,28496,94432,315024,1148176,4196144,16491760,64635984,
%T 269420656,1113440816,4854540592,20870725584,94119170416,416524927664,
%U 1926045742000,8704759565904,41004476986096,188158197010736
%N Number of (n+1) X (3+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4 (constant-stress 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234653/b234653.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n-1) +83*a(n-2) -804*a(n-3) -2479*a(n-4) +34112*a(n-5) +22457*a(n-6) -798036*a(n-7) +453896*a(n-8) +11262032*a(n-9) -15161188*a(n-10) -98135856*a(n-11) +191644944*a(n-12) +513355968*a(n-13) -1327868352*a(n-14) -1430555904*a(n-15) +5245827840*a(n-16) +1148359680*a(n-17) -11006668800*a(n-18) +3284582400*a(n-19) +9455616000*a(n-20) -5971968000*a(n-21).
%e Some solutions for n=4:
%e 5 2 3 2 4 4 4 4 2 5 0 5 1 3 0 4 0 4 4 4
%e 3 4 1 4 0 4 0 4 4 3 2 3 3 1 2 2 4 4 0 4
%e 3 0 1 0 1 1 1 1 2 5 0 5 2 4 1 5 5 1 1 1
%e 2 3 0 3 0 4 0 4 2 1 0 1 4 2 3 3 4 4 0 4
%e 3 0 1 0 4 4 4 4 5 0 3 0 1 3 0 4 0 4 4 4
%Y Column 3 of A234658.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 29 2013
|