%I
%S 1834,17022,158288,1483566,13868952,130537496,1224977498,11577801970,
%T 109063132114,1035175545192,9789065497830,93311908294380,
%U 885819798218548,8480241264665590,80814542061692066,776980355789433902
%N Number of (n+1) X (2+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant-stress 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234492/b234492.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 27*a(n-1) -7*a(n-2) -5642*a(n-3) +38876*a(n-4) +328643*a(n-5) -3991917*a(n-6) -1314423*a(n-7) +134764409*a(n-8) -274870060*a(n-9) -1754310602*a(n-10) +6188057089*a(n-11) +6383741530*a(n-12) -45869779722*a(n-13) +19646271368*a(n-14) +128555834088*a(n-15) -144208395792*a(n-16) -115200081792*a(n-17) +233207698368*a(n-18) -26459811072*a(n-19) -102846620160*a(n-20) +35034937344*a(n-21) +13514784768*a(n-22) -5918883840*a(n-23).
%e Some solutions for n=3:
%e 0 3 4 1 2 1 0 4 3 0 2 3 1 2 3 1 2 1 1 4 1
%e 0 1 4 1 0 1 0 2 3 5 5 4 3 2 5 3 2 3 1 2 1
%e 1 0 5 3 4 3 0 4 3 2 4 5 1 2 3 5 2 1 2 1 2
%e 5 2 5 4 3 4 1 3 0 2 2 5 2 1 4 2 1 2 4 1 4
%Y Column 2 of A234497.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 26 2013
|