%I #6 Jun 20 2022 21:21:56
%S 160,1120,1120,8064,11574,8064,58720,125080,125080,58720,428800,
%T 1377422,2053280,1377422,428800,3137920,15269704,34601928,34601928,
%U 15269704,3137920,22953984,170001402,588663528,898985624,588663528,170001402
%N T(n,k) is the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant-stress 1 X 1 tilings).
%C Table starts
%C 160 1120 8064 58720 428800
%C 1120 11574 125080 1377422 15269704
%C 8064 125080 2053280 34601928 588663528
%C 58720 1377422 34601928 898985624 23647980136
%C 428800 15269704 588663528 23647980136 963859893408
%C 3137920 170001402 10079824144 627437990794 39720806964788
%C 22953984 1894235272 172781443608 16674841633492 1639385463803776
%C 168075520 21145362278 2969800840496 444755926154674 67993371547921628
%C 1229731840 235980939816 51008286679168 11853880524355808 2815853396337809696
%H R. H. Hardin, <a href="/A234450/b234450.txt">Table of n, a(n) for n = 1..97</a>
%F Empirical for column k:
%F k=1: a(n) = 60*a(n-2) -344*a(n-4).
%F k=2: [order 17].
%F k=3: [order 92].
%e Some solutions for n=2, k=4:
%e 0 1 2 4 4 0 1 2 2 1 0 3 1 0 0 0 1 0 3 1
%e 0 0 0 3 2 0 0 2 3 3 1 3 2 0 1 0 2 0 4 3
%e 0 1 0 2 0 1 0 1 1 2 0 1 1 0 0 1 4 1 4 4
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 26 2013