login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234450 T(n,k) is the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant-stress 1 X 1 tilings). 7

%I #6 Jun 20 2022 21:21:56

%S 160,1120,1120,8064,11574,8064,58720,125080,125080,58720,428800,

%T 1377422,2053280,1377422,428800,3137920,15269704,34601928,34601928,

%U 15269704,3137920,22953984,170001402,588663528,898985624,588663528,170001402

%N T(n,k) is the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant-stress 1 X 1 tilings).

%C Table starts

%C 160 1120 8064 58720 428800

%C 1120 11574 125080 1377422 15269704

%C 8064 125080 2053280 34601928 588663528

%C 58720 1377422 34601928 898985624 23647980136

%C 428800 15269704 588663528 23647980136 963859893408

%C 3137920 170001402 10079824144 627437990794 39720806964788

%C 22953984 1894235272 172781443608 16674841633492 1639385463803776

%C 168075520 21145362278 2969800840496 444755926154674 67993371547921628

%C 1229731840 235980939816 51008286679168 11853880524355808 2815853396337809696

%H R. H. Hardin, <a href="/A234450/b234450.txt">Table of n, a(n) for n = 1..97</a>

%F Empirical for column k:

%F k=1: a(n) = 60*a(n-2) -344*a(n-4).

%F k=2: [order 17].

%F k=3: [order 92].

%e Some solutions for n=2, k=4:

%e 0 1 2 4 4 0 1 2 2 1 0 3 1 0 0 0 1 0 3 1

%e 0 0 0 3 2 0 0 2 3 3 1 3 2 0 1 0 2 0 4 3

%e 0 1 0 2 0 1 0 1 1 2 0 1 1 0 0 1 4 1 4 4

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 26 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 10:51 EDT 2024. Contains 374345 sequences. (Running on oeis4.)