%I
%S 432,5646,5646,66806,204320,66806,829594,6467216,6467216,829594,
%T 10158894,220295536,496111352,220295536,10158894,125160846,7430382692,
%U 44527292660,44527292660,7430382692,125160846,1539127906,252526817148,3864905915306
%N T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 12
%C Table starts
%C ......432.......5646.........66806...........829594............10158894
%C .....5646.....204320.......6467216........220295536..........7430382692
%C ....66806....6467216.....496111352......44527292660.......3864905915306
%C ...829594..220295536...44527292660...11015033292000....2640075449367340
%C .10158894.7430382692.3864905915306.2640075449367340.1708801212596211700
%H R. H. Hardin, <a href="/A234405/b234405.txt">Table of n, a(n) for n = 1..60</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 11]
%F k=2: [order 60]
%e Some solutions for n=1 k=4
%e ..4..5..2..0..2....6..2..1..0..0....1..4..0..4..4....0..3..0..6..0
%e ..0..6..0..4..6....0..1..6..2..6....0..6..3..6..0....0..6..3..6..4
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 25 2013
|