%I #33 Jun 27 2020 12:04:03
%S 0,0,0,0,0,0,0,1,5,9,25,35,75,95,175,210,350,406,630,714,1050,1170,
%T 1650,1815,2475,2695,3575,3861,5005,5369,6825,7280,9100,9660,11900,
%U 12580,15300,16116,19380,20349,24225,25365,29925,31255,36575,38115,44275,46046,53130,55154,63250,65550,74750,77350,87750,90675
%N a(n) = binomial(floor(n/2),4) + (ceiling(n/2)-3)*binomial(floor(n/2),3).
%H Vincenzo Librandi, <a href="/A234277/b234277.txt">Table of n, a(n) for n = 0..1000</a>
%H Dhruv Mubayi, <a href="http://dx.doi.org/10.100/s00493-013-2638-2">Counting substructures II: Hypergraphs</a>, Combinatorica 33 (2013), no. 5, 591--612. MR3132928.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-4,-6,6,4,-4,-1,1).
%F G.f.: -x^7*(4*x+1) / ((x-1)^5*(x+1)^4). - _Colin Barker_, Jan 02 2014
%F a(n) = (2*n - 1 + (-1)^n)*(2*n - 5 + (-1)^n)*(2*n - 9 + (-1)^n)*(10*n - 57 - 3*(-1)^n)/6144. - _Luce ETIENNE_, Nov 18 2017
%t CoefficientList[Series[-x^7 (4 x + 1)/((x - 1)^5 (x + 1)^4), {x, 0, 40}], x] (* _Vincenzo Librandi_ Feb 01 2014 *)
%t LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1},{0,0,0,0,0,0,0,1,5},60] (* _Harvey P. Dale_, Jun 27 2020 *)
%o (PARI) Vec(-x^7*(4*x+1)/((x-1)^5*(x+1)^4) + O(x^100)) \\ _Colin Barker_, Jan 02 2014
%Y Cf. A000292, A002418.
%K nonn,easy
%O 0,9
%A _N. J. A. Sloane_, Dec 27 2013