login
Number of (n+1) X (6+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3 (constant-stress 1 X 1 tilings).
1

%I #6 Jun 19 2022 02:04:58

%S 137536,293316,648536,1597896,4055128,11145960,31418264,94267656,

%T 289507096,935746056,3091187096,10648070856,37386104728,135693045000,

%U 499984167704,1889644564296,7218907939096,28112535319176,110246083106456

%N Number of (n+1) X (6+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 3 (constant-stress 1 X 1 tilings).

%H R. H. Hardin, <a href="/A234225/b234225.txt">Table of n, a(n) for n = 1..46</a>

%F Empirical: a(n) = 10*a(n-1) +16*a(n-2) -460*a(n-3) +789*a(n-4) +7170*a(n-5) -23944*a(n-6) -39920*a(n-7) +246076*a(n-8) -38440*a(n-9) -1115136*a(n-10) +1151040*a(n-11) +2005056*a(n-12) -3657600*a(n-13) -331776*a(n-14) +3456000*a(n-15) -1658880*a(n-16).

%e Some solutions for n=1:

%e 0 3 2 3 0 2 4 2 0 3 1 4 2 1 2 3 2 3 3 2 1

%e 2 2 4 2 2 1 0 1 2 2 3 3 4 0 3 1 3 1 4 0 2

%Y Column 6 of A234227.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 21 2013