Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Jun 20 2022 21:34:36
%S 412,3710,33720,307598,2802904,25588052,233283984,2130704612,
%T 19434069328,177586235768,1620462346080,14814614085176,
%U 135240525352288,1236977850187472,11296995731446848,103375851177954704
%N Number of (n+1) X (1+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant-stress 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234185/b234185.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) + 120*a(n-2) - 576*a(n-3) - 3026*a(n-4) + 5484*a(n-5) + 6720*a(n-6) - 10080*a(n-7).
%F Empirical g.f.: 2*x*(206 + 619*x - 18990*x^2 - 51305*x^3 + 147294*x^4 + 124320*x^5 - 246960*x^6) / ((1 - 6*x - 32*x^2 + 48*x^3)*(1 - 88*x^2 + 210*x^4)). - _Colin Barker_, Oct 13 2018
%e Some solutions for n=3:
%e 6 4 6 5 0 1 5 2 5 3 3 6 4 5 0 5 5 5 3 5
%e 4 0 4 5 3 2 4 3 6 6 1 2 1 4 1 4 6 4 2 2
%e 2 0 4 3 5 2 5 6 2 0 2 5 2 3 1 2 3 3 6 4
%e 6 2 5 6 6 1 2 5 3 3 0 5 1 4 6 5 0 2 6 6
%Y Column 1 of A234190.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 20 2013