%I #4 Dec 18 2013 07:20:35
%S 48,188,188,728,864,728,3016,3976,3976,3016,12416,20564,21272,20564,
%T 12416,52880,106056,134044,134044,106056,52880,224288,587472,840136,
%U 1037788,840136,587472,224288,966496,3219000,5908796,8010708,8010708
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 10 (10 maximizes T(1,1))
%C Table starts
%C .......48.......188.........728.........3016..........12416...........52880
%C ......188.......864........3976........20564.........106056..........587472
%C ......728......3976.......21272.......134044.........840136.........5908796
%C .....3016.....20564......134044......1037788........8010708........71071752
%C ....12416....106056......840136......8010708.......75825248.......843467784
%C ....52880....587472.....5908796.....71071752......843467784.....11722485528
%C ...224288...3219000....40707148....620296556.....9249598420....162075947224
%C ...966496..18340844...300964068...5958138300...114532675912...2557562765212
%C ..4154112.103336120..2170249820..55642278148..1373037554172..39441683772012
%C .17982656.594474624.16319809356.552091785752.17854333708644.668586112256016
%H R. H. Hardin, <a href="/A233967/b233967.txt">Table of n, a(n) for n = 1..179</a>
%F Empirical for column k:
%F k=1: a(n) = 4*a(n-1) +10*a(n-2) -36*a(n-3) -8*a(n-4) +16*a(n-5)
%F k=2: [order 14]
%F k=3: [order 43]
%e Some solutions for n=3 k=4
%e ..2..1..2..0..0....1..3..0..3..1....1..0..2..1..0....1..3..0..2..1
%e ..3..0..3..1..3....0..2..3..2..0....2..3..3..0..3....0..2..1..3..0
%e ..0..1..2..0..2....1..3..0..3..1....3..0..2..1..2....1..3..0..0..1
%e ..3..0..3..3..1....2..0..1..2..0....0..1..3..0..3....2..0..1..3..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 18 2013
|