%I #4 Dec 18 2013 07:16:37
%S 728,3976,21272,134044,840136,5908796,40707148,300964068,2170249820,
%T 16319809356,120174249084,907678421084,6751563124588,51016375904376,
%U 381455757341724,2880603783823300,21600602128435664,162999821582725560
%N Number of (n+1)X(3+1) 0..3 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 10
%C Column 3 of A233967
%H R. H. Hardin, <a href="/A233962/b233962.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 15*a(n-1) +31*a(n-2) -1396*a(n-3) +2653*a(n-4) +51714*a(n-5) -174135*a(n-6) -1048642*a(n-7) +4568556*a(n-8) +13206552*a(n-9) -69675134*a(n-10) -110040243*a(n-11) +692530682*a(n-12) +626223287*a(n-13) -4730984068*a(n-14) -2448897493*a(n-15) +22858856946*a(n-16) +6357801357*a(n-17) -79394291518*a(n-18) -9325291758*a(n-19) +199923021296*a(n-20) -23907331*a(n-21) -365908349411*a(n-22) +34128121167*a(n-23) +485101885188*a(n-24) -82901695912*a(n-25) -461141546148*a(n-26) +108852864503*a(n-27) +308761092196*a(n-28) -88956808820*a(n-29) -141933147555*a(n-30) +45953728822*a(n-31) +43469138372*a(n-32) -14674989574*a(n-33) -8649583694*a(n-34) +2801908488*a(n-35) +1098165952*a(n-36) -309043744*a(n-37) -85338496*a(n-38) +18684416*a(n-39) +3638272*a(n-40) -557056*a(n-41) -64000*a(n-42) +6144*a(n-43)
%e Some solutions for n=4
%e ..2..0..0..2....2..3..0..3....2..0..1..3....0..3..0..3....0..3..0..1
%e ..3..1..3..3....1..0..1..0....1..3..2..0....2..1..2..1....3..2..3..2
%e ..0..0..2..0....3..2..3..2....2..0..3..1....3..0..3..0....3..0..1..0
%e ..1..3..1..3....1..0..1..0....1..3..2..0....1..2..1..0....3..2..3..2
%e ..2..0..0..2....0..3..0..3....2..0..3..1....3..0..3..0....3..0..3..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2013
|