%I #8 Jul 07 2014 11:13:42
%S 188,864,3976,20564,106056,587472,3219000,18340844,103336120,
%T 594474624,3391176148,19563928568,112234856476,647875877440,
%U 3726750502572,21511723279236,123905848668112,715090108241552,4121677019141208
%N Number of (n+1) X (2+1) 0..3 arrays with every 2 X 2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 10.
%C Column 2 of A233967.
%H R. H. Hardin, <a href="/A233961/b233961.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) +6*a(n-2) -231*a(n-3) +402*a(n-4) +1164*a(n-5) -3026*a(n-6) -973*a(n-7) +5685*a(n-8) -1687*a(n-9) -2838*a(n-10) +1862*a(n-11) -188*a(n-12) -88*a(n-13) +16*a(n-14).
%e Some solutions for n=5:
%e ..3..2..1....0..1..0....0..1..2....1..0..1....2..0..2....2..3..2....0..3..0
%e ..0..3..0....0..3..2....3..0..3....3..2..3....1..3..3....1..0..1....0..1..0
%e ..3..2..1....0..1..0....0..1..2....1..0..1....2..0..2....0..3..2....3..0..3
%e ..0..3..0....3..0..3....2..3..0....0..3..0....3..3..3....0..1..0....0..1..0
%e ..1..2..1....1..0..1....0..1..0....2..1..0....2..0..2....3..0..3....0..3..2
%e ..3..0..3....2..3..2....0..3..0....3..0..3....1..3..1....1..2..3....0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2013
|