%I
%S 80,380,380,1776,2820,1776,8336,20616,20616,8336,39084,152216,238800,
%T 152216,39084,183304,1120996,2805732,2805732,1120996,183304,859628,
%U 8268188,32938264,52918992,32938264,8268188,859628,4031428,60946532
%N T(n,k)=Number of (n+1)X(k+1) 0..5 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 10 (10 maximizes T(1,1)), and no two adjacent values equal
%C Table starts
%C .......80.........380..........1776.............8336..............39084
%C ......380........2820.........20616...........152216............1120996
%C .....1776.......20616........238800..........2805732...........32938264
%C .....8336......152216.......2805732.........52918992..........998464148
%C ....39084.....1120996......32938264........998464148........30386593584
%C ...183304.....8268188.....387379488......18908052288.......929465951096
%C ...859628....60946532....4554084512.....357835576968.....28436177941324
%C ..4031428...449407260...53556471248....6778283795436....870959320798912
%C .18906220..3313237900..629746787804..128347877009696..26671998316679332
%C .88664800.24429430652.7405534639216.2431104574304708.817067896999830408
%H R. H. Hardin, <a href="/A233958/b233958.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: a(n) = 4*a(n-1) +5*a(n-2) -7*a(n-3) -6*a(n-4)
%F k=2: [order 19]
%F k=3: [order 45]
%e Some solutions for n=2 k=4
%e ..4..5..4..2..4....3..4..3..2..3....0..2..3..2..3....3..1..3..5..3
%e ..2..3..2..3..5....1..3..5..4..5....2..3..1..0..2....1..0..2..3..2
%e ..3..1..0..2..4....3..2..4..2..3....3..1..0..2..1....3..2..3..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 18 2013
|